Browsing by Author "Sharma, R"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item SNHG12: An LncRNA as a Potential Therapeutic Target and Biomarker for Human Cancer(Frontiers Media S.A., 2019) Tamang, S; Acharya, V; Roy, D; Sharma, R; Aryaa, A; Sharma, U; Khandelwal, A; Prakash, H; Vasquez, K.M; Jain, A.Limitations in current diagnostic procedures warrant identification of new methodologies to improve diagnoses of cancer patients. In this context, long non-coding RNAs (lncRNAs) have emerged as stable biomarkers which are expressed abundantly in tumors. Importantly, these can be detected at all stages of tumor development, and thus may provide potential biomarkers and/or therapeutic targets. Recently, we suggested that aberrant levels of lncRNAs can be used to determine the invasive and metastatic potential of tumor cells. Further, direct correlations of lncRNAs with cancer-derived inflammation, metastasis, epithelial-to-mesenchymal transition, and other hallmarks of cancer indicate their potential as biomarkers and targets for cancer. Thus, in this review we have discussed the importance of small nucleolar RNA host gene 12 (SNHG12), a lncRNA, as a potential biomarker for a variety of cancers. A meta-analysis of a large cohort of cancer patients revealed that SNHG12 may also serve as a potential target for cancer-directed interventions due to its involvement in unfolded protein responses, which many tumor cells exploit to both evade immune-mediated attack and enhance the polarization of effector immune cells (e.g., macrophages and T cells). Thus, we propose that SNHG12 may serve as both a biomarker and a druggable therapeutic target with promising clinical potential.Item Stability, electronic and optical properties of in-plane WSe2 heterophase nano-ribbons(American Institute of Physics, 2019) Bharti, A; Katoch, N; Kumar, Ashok; Sharma, R; Ahluwalia, P.K.We present first principle investigations on in-plane phase engineered nanoribbons with two different widths. 2H and 1T' phases of WSe2 are joined along x-direction, which forms an armchair type interface. The low values of formation energy shows that these structure are energetically stable. The study of electronic structure reveals that they are metallic and the electronic conductivity varies significantly with ribbon length. The ribbons show anisotropic dielectric response compared to constituent monolayers. Optical properties alter considerably for these hetero-systems showing potential for tunable opto-electronic applications. © 2019 Author(s).Item Strain tunable Schottky barriers and tunneling characteristics of borophene/MX2 van der Waals heterostructures(Elsevier, 2020) Katoch, N; Kumar, A; Sharma, R; Ahluwalia, P.K; Kumar, J.Based on first-principle calculations, we report the strain induced changes in electronic properties and their influence on current-voltage (I?V) characteristics of the borophene (?12)/MX2 (M = Mo, W and X = S, Se) vdW heterostructures. The results reveal that the intrinsic electronic nature of borophene and MX2 is retained because of weak van der Waals interactions. However, p-type Schottky contacts are formed at the interface of the heterostructures. Application of the in-plane tensile and compression strains is effective in tuning the Schottky contacts and controlling the SBHs. Also, at the vertical pressure values of 5.46 and 5.25 GPa for ?12/MoS2 and ?12/WS2 respectively, Schottky contact changes from p-type to n-type. The I?V characteristics exhibit an ohmic behavior at low bias ±0.1 v and noticeable NDR on changing positive (negative) biases. Such strain tunable Schottky barriers may be influential in ?12/MX2 based high-performance nano- and optoelectronic devices. - 2020 Elsevier B.V.