Browsing by Author "Shashank, Kumar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Novel potent inhibitors of Plasmodium vivax dihydrofolate reductase: An in silico antimalarial drug discovery(Association of Pharmaceutical Teachers of India, 2018) Pushpendra, Singh; Kushwaha, Prem Prakash; Shashank, KumarObjectives: In the present study, we targeted the dihydrofolate reductase enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate which is required for the purines and pyrimidine synthesis. Malaria is one of the severe diseases throughout the world caused by blood-borne parasite Plasmodium vivax. Materials and Methods: Eighty-five parthenin analogs were docked against P. vivax and Homo sapiens dihydrofolate reductase proteins (PDB 2BL9 and 1KMS respectively) by using Maestro 9.6 program to evaluate the binding affinities of ligands with the protein. Results and Discussion: Docking analysis revealed some best hit ligands against P. vivax such as CID3467446 and CID56671343 but not inhibited the mammalian dihydrofolate reductase. The Dock score of parthenin analogs ranged from -7.31 to -9.3 while for standard dihydrofolate reductase inhibitors it was -4.78 to -8.04. Structural analysis of docked complexes of selected parthenin like compounds with P. vivax and mammalian dihydrofolate reductase revealed the involvement of Arg 115, Leu 136, Lys 138, Gly 175, Ser 117, Gln 177 and Ile 7, Ala 9, Thr 56, Ile 60, Pro 61 amino acid residues respectively in strong interactions. Absorption, distribution, metabolism, and excretion properties of best-docked compounds were predicted using QikProp application of Maestro 9.6. The results indicated that all the best-docked lead compounds followed Lipinski?s rule of five. Conclusion: Based on the results of the present study it has been concluded that parthenin like compounds may serve as potent dihydrofolate reductase inhibition based anti-malarial drug lead. ? 2018, Association of Pharmaceutical Teachers of India. All rights reserved.Item Oxidative Stress in Invertebrate Systems(InTech, 2016) Chaitanya, R. K.; Shashank, Kumar; Sridevi, P.Invertebrates have been valuable research models in the discovery of many scientific principles owing to the numerous advantages they provide. Throughout the life cycle, many of them thrive in pathogen-rich environments, manage harsh weathers, exposed to a number of allochemicals, and adapt well to both terrestrial and marine ecosystems. Their remarkable ability to cope up with the enormous oxidative stress generated in all these circumstances, make them attractive models in this field of research. Endocrine control of oxidative stress in insects is recently emerging. Adipokinetic hormone, glucagon, ecdysteroids and juvenile hormone have been implicated in antioxidative protective role in insects. Drosophila and Caenorhabditis elegans have provided the largest body of evidence addressing the free radical theory of ageing. Oxidative stress is also induced by pesticides/insecticides. In mollusks, pesticides exert their biological effects via generation of ROS. Oxidative stress has been shown to be associated with exposure to several organophosphorous compounds and different classes of pyrethroids. Malathion is a potential hazard to the environment. Adverse effects induced by malathion in earthworms and insects have been reported. Information is now available in great detail on the role of ROS in modulating insect immunity during parasite invasion and bacterial infection. In Drosophila melanogaster ROS are actively produced in the midgut at a basal level in the presence of commensal microbiota and highly generated upon bacterial challenge. The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. The concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, indicating that oxidative stress may be important for Wolbachia-mediated antiviral protection. In a nutshell, this chapter highlights the current advances of oxidative stress in invertebrate model systems and its implications.