Browsing by Author "Sidhu, Jagpreet Singh"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Indole derivatives as anticancer agents for breast cancer therapy: A review(Bentham Science Publishers B.V., 2016) Sidhu, Jagpreet Singh; Singla, Ramit; Mayank; Jaitak, VikasBreast cancer (BC) is the second most common cause of cancer-related deaths in women throughout the world. Multiple drugs have been approved by US-FDA for breast related malignancies. Frequent emergence of resistances creates the severe need of newer moieties that are free from such problems. Drugs targeting breast cancer have been observed to be based on the multiple mechanisms of action, and various indole based anticancer agents have also been explored. Moreover, indoles have promising anti-cancer potential; there has been the emphasis on the synthesis of indole derivatives to overcome problems faced by existing therapeutic agents. Taking into consideration the above-mentioned facts we have analyzed in detail the possible role of indole based anticancer agents typically for breast related malignancies. This is the first exhaustive review that jointly covers various synthetic anticancer indole derivatives and related signaling pathways by which these derivatives have shown promising anti-breast cancer potential. ? 2016 Bentham Science Publishers.Item Structural Diversity of D-Alanine: D-Alanine Ligase and Its Exploration in Development of Antibacterial Agents Against the Multi-Variant Bacterial Infections(John Wiley and Sons Inc, 2022-04-07T00:00:00) Mayank; Sidhu, Jagpreet Singh; Joshi, Gaurav; Sindhu, Jayant; Kaur, Navneet; Singh, NarinderD-alanine: D-alanine ligase (Rv2981c or Ddl) (EC 6.3.2.4) is a bacterial protein that performs critical functions for the proper growth and development of bacterial cells. Understanding the activity profile of Ddl within the various strains of the bacteria seems vital in broad-spectrum antimicrobial drug discovery. Therefore, to understand this heterologous nature, we focused on understanding the functional impact of the structural differences in the Ddl protein from Legionella pneumophila and E. coli bacteria. The structural features and dynamic behavior of Ddl, the interaction pattern, and the docking score of the Ddl-ATP/ADP are also found significantly different from each other. In-depth analysis viz molecular dynamics simulation and residue interaction network (RIN) studies provided us the detailed insight into the differences in the Ddl proteins from both the bacteria. In conclusion, understanding the inter-specific differences in the antibiotic targets Ddl in the case of diverse bacterial strains is vital for rationalizing the treatment of these infectious diseases. Therefore, the current work attempts to foresee the development of more efficacious antibacterial agents devoid of emerging resistance to bacterium strains. � 2022 Wiley-VCH GmbH.Item Trends in small organic fluorescent scaffolds for detection of oxidoreductase(Elsevier Ltd, 2021-06-15T00:00:00) Sidhu, Jagpreet Singh; Kaur, Navneet; Singh, NarinderOxidoreductases are diverse class of enzymes engaged in modulating the redox homeostasis and cellular signaling cascades. Abnormal expression of oxidoreductases including thioredoxin reductase, azoreductase, cytochrome oxidoreductase, tyrosinase and monoamine oxidase leads to the initiation of numerous disorders. Thus, enzymes are the promising biomarkers of the diseased cells and their accurate detection has utmost significance for clinical diagnosis. The detection method must be extremely selective, sensitive easy to use, long self-life, mass manufacturable and disposable. Fluorescence assay approach has been developed potential substitute to conventional techniques used in enzyme's quantification. The fluorescent probes possess excellent stability, high spatiotemporal ratio and reproducibility represent applications in real sample analysis. Therefore, the enzymatic transformations have been monitored by small activatable organic fluorescent probes. These probes are generally integrated with enzyme's substrate/inhibitors to improve their binding affinity toward the enzyme's catalytic site. As the recognition unit bio catalyzed, the signaling unit produces the readout signals and provides novel insights to understand the biochemical reactions for diagnosis and development of point of care devices. Several structural modifications are required in fluorogenic scaffolds to tune the selectivity for a particular enzyme. Hence, the fluorescent probes with their structural features and enzymatic reaction mechanism of oxidoreductase are the key points discussed in this review. The basic strategies to detect each enzyme are discussed. The selectivity, sensitivity and real-time applications are critically compared. The kinetic parameters and futuristic opportunities are present, which would be enormous benefits for chemists and biologists to understand the facts to design and develop unique fluorophore molecules for clinical applications. � 2021 Elsevier B.V.