Browsing by Author "Singh, Gurpreet"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Design Strategies, Chemistry and Therapeutic Insights of Multi-target Directed Ligands as Antidepressant Agents(Bentham Science Publishers, 2021-11-03T00:00:00) Singh, Karanvir; Bhatia, Rohit; Kumar, Bhupinder; Singh, Gurpreet; Monga, VikramdeepDepression is one of the major disorders of the central nervous system worldwide and causes disability and functional impairment. According to the World Health Organization, around 265 million people worldwide are affected by depression. Currently marketed antidepressant drugs take weeks or even months to show anticipated clinical efficacy but remain ineffective in treating suicidal thoughts and cognitive impairment. Due to the multifactorial complexity of the disease, single-target drugs do not always produce satisfactory results and lack the desired level of therapeutic efficacy. Recent literature reports have revealed improved therapeutic potential of multi-target directed ligands due to their synergistic potency and better safety. Medicinal chemists have gone to great extents to design multitarget ligands by generating structural hybrids of different key pharmacophores with improved binding affinities and potency towards different receptors or enzymes. This article has compiled the design strategies of recently published multi-target directed ligands as antidepressant agents. Their biological evaluation, structural-activity relationships, mechanistic and in silico studies have also been described. This article will prove to be highly useful for the researchers to design and develop multi-target ligands as antidepressants with high potency and therapeutic efficacy. � 2022 Bentham Science Publishers.Item Dietary Patterns and Breast Cancer Risk: A Multi-Centre Case Control Study among North Indian Women(mdpi, 2018) Shridhar, Krithiga; Singh, Gurpreet; Dey, Subhojit; Dhatt, Sarvdeep Singh; Gill, Jatinder Paul Singh; Goodman, Michael; Magsumbol, Melina Samar; Pearce, Neil; Singh, Sandeep; Singh, Archna; Singh, Preeti; Thakur, Jarnail Singh; Dhillon, Preet KaurEvidence from India, a country with unique and distinct food intake patterns often characterized by lifelong adherence, may offer important insight into the role of diet in breast cancer etiology. We evaluated the association between Indian dietary patterns and breast cancer risk in a multi-centre case-control study conducted in the North Indian states of Punjab and Haryana. Eligible cases were women 30–69 years of age, with newly diagnosed, biopsy-confirmed breast cancer recruited from hospitals or population-based cancer registries. Controls (hospital- or population-based) were frequency matched to the cases on age and region (Punjab or Haryana). Information about diet, lifestyle, reproductive and socio-demographic factors was collected using a structured interviewer-administered questionnaire. All participants were characterized as non-vegetarians, lacto-vegetarians (those who consumed no animal products except dairy) or lacto-ovo-vegetarians (persons whose diet also included eggs). The study population included 400 breast cancer cases and 354 controls. Most (62%) were lacto-ovo-vegetarians. Breast cancer risk was lower in lacto-ovo-vegetarians compared to both non-vegetarians and lacto-vegetarians with odds ratios (95% confidence intervals) of 0.6 (0.3–0.9) and 0.4 (0.3–0.7), respectively. The unexpected difference between lacto-ovo-vegetarian and lacto-vegetarian dietary patterns could be due to egg-consumption patterns which requires confirmation and further investigation.Item The medicinal perspective of 2,4-thiazolidinediones based ligands as antimicrobial, antitumor and antidiabetic agents: A review(John Wiley and Sons Inc, 2022-06-18T00:00:00) Kajal, Kumari; Singh, Gurpreet; Pradhan, Tathagata; Bhurta, Deendyal; Monga, Vikramdeep2,4-Thiazolidinedione (2,4-TZD), commonly known as glitazone, is a ubiquitous heterocyclic pharmacophore possessing a plethora of pharmacological activities and offering a vast opportunity for structural modification. The diverse range of biological activities endowed with a novel mode of action, low cost, and easy synthesis has attracted the attention of medicinal chemists. Several researchers have integrated the TZD core with different structural fragments to develop a wide range of lead molecules against various clinical disorders. The most common sites for structural modifications at the 2,4-TZD nucleus are the N-3 and the active methylene at C-5. The review covers the recent development of TZD derivatives such as antimicrobial, anticancer, and antidiabetic agents. Various 2,4-TZD based agents or drugs, which are either under clinical development or in the market, are discussed in the study. Different synthetic methodologies for synthesizing the 2,4-TZD core are also included in the manuscript. The importance of various substitutions at N-3 and C-5 and the mechanisms of action and structure�activity relationships are also discussed. We hope this study will serve as a valuable tool for the scientific community engaged in the structural exploitation of the 2,4-TZD core for developing novel drug m\olecules for life-threatening ailments. � 2022 Deutsche Pharmazeutische Gesellschaft.Item Peptide Nucleic Acids: Recent Developments in the Synthesis and Backbone Modifications(Academic Press Inc., 2023-09-18T00:00:00) Singh, Gurpreet; Monga, VikramdeepNucleic acid represents the ideal drug candidate for protein targets that are hard to target or against which drug development is not easy. Peptide nucleic acids (PNAs) are synthesized by attaching modified peptide backbones generally derived from repetitive N-2-aminoethyl glycine units in place of the regular phosphodiester backbone and represent synthetic impersonator of nucleic acids that offers an exciting research field due to their fascinating spectrum of biotechnological, diagnostic and potential therapeutic applications. The semi-rigid peptide nucleic acid backbone serves as a nearly-perfect template for attaching complimentary base pairs on DNA or RNA in a sequence-dependent manner as described by Watson-Crick models. PNAs and their analogues are endowed with exceptionally high affinity and specificity for receptor sites, essentially due to their polyamide backbone's uncharged and flexible nature. The present review compiled various strategies to modify the polypeptide backbone for improving the target selectivity and stability of the PNAs in the body. The investigated biological activities carried out on PNAs have also been summarized in the present review. � 2023 Elsevier Inc.Item Rhodanine derivatives: An insight into the synthetic and medicinal perspectives as antimicrobial and antiviral agents(John Wiley and Sons Inc, 2022-11-30T00:00:00) Chaurasyia, Abhishek; Chawla, Pooja; Monga, Vikramdeep; Singh, GurpreetRhodanine or 2-Thioxothiazolidin-4-one is a privileged heterocyclic compound offering a wide opportunity for structural modification, lead development, and modification. It is one of the highly decorated scaffolds in the drug discovery process. Rhodanine derivatives possess a plethora of biological activities due to their ability to interact with a diverse range of protein targets, which provide tremendous opportunities to discover new drugs with different modes of action. The most common strategy for developing novel rhodanine derivatives is the introduction of structurally diverse substituents at the C-5 or N-3, or both positions. Since the inception of Epralestat into the market in 1992, the exploration of rhodanine-3-acetic acids has led to the development of novel leads against different biological targets such as MRSA, HHV-6, Mycobacterial tuberculosis, dengue, etc. In the current pandemic era, some rhodanine compounds have been explored against SARS-CoV-2. In recent years, rhodanine and its derivatives have witnessed significant progress in developing new drug leads as potential antimicrobial and antiviral agents. Different synthetic methodologies and recent developments in the medicinal chemistry of rhodanine derivatives, including biological activities, their mechanistic aspects, structure�activity relationships, and in silico findings, have been compiled in the present review. This article will benefit the scientific community and offer perspectives on how these scaffolds as privileged structures might be exploited in the future for rational design and discovery of rhodanine-based bio-active molecules. � 2022 John Wiley & Sons Ltd.