Browsing by Author "Singh, H.P."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Alterations in photosynthetic pigments, protein, and carbohydrate metabolism in a wild plant Coronopus didymus L. (Brassicaceae) under lead stress(Polish Academy of Sciences, 2017) Sidhu, G.P.S.; Singh, H.P.; Batish, Daizy R.; Kohli, R.K.Coronopus didymus has been emerged as a promising wild, unpalatable plant species to alleviate lead (Pb) from the contaminated soils. This work investigated the hypothesis regarding various metabolic adaptations of C. didymus under lead (Pb) stress. In pot experiments, we assessed the effect of Pb at varied concentrations (500?2900?mg?kg?1) on growth, photosynthetic pigments, alteration of macromolecular (protein and carbohydrate) content, and activities of enzymes like protease, ?-and ?-amylase, peroxidase (POX), and polyphenol oxidase (PPO) in C. didymus for 6?weeks. Results revealed that Pb exposure enhanced the growth, protein, and carbohydrate level, but decreased the leaf pigment concentration and activities of hydrolytic enzymes. The activities of POX and PPO in roots increased progressively by ~337 and 675%, respectively, over the control, at 2900?mg?kg?1 Pb treatment. Likewise, contemporaneous findings were noticed in shoots of C. didymus, strongly indicating its inherent potential to cope Pb-induced stress. Furthermore, the altered plant biochemical status and upregulated metabolic activities of POX and PPO indulged in polyphenol peroxidation elucidate their role in allocating protection and conferring resistance against Pb instigated stress. The current work suggests that stress induced by Pb in C. didymus stimulated the POX and PPO activities which impart a decisive role in detoxification of peaked Pb levels, perhaps, by forming physical barrier or lignifications. ? 2017, Franciszek G?rski Institute of Plant Physiology, Polish Academy of Sciences, KrakItem Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm.(Elsevier Ltd, 2018) Sidhu, G.P.S.; Bali, A.S.; Singh, H.P.; Batish, Daizy R.; Kohli, R.K.In a screenhouse, the applicability of biodegradable chelant ethylenediamine disuccinic acid (EDDS) to enhance Ni-phytoextraction by Coronopus didymus was tested for the first time. This study assayed the hypothesis based upon the role of EDDS on physiological and biochemical alterations and ameliorating phytoextraction capacity of C. didymus under nickel (Ni) stress. Pot experiments were conducted for 6 weeks and C. didymus plants were cultivated in soil artificially contaminated with 30, 50, and 70 mg kg?1 Ni treatments. Soil was amended with EDDS (2 mmol kg?1). Plants were harvested, 1 week after EDDS application. At 70 mg kg?1 Ni level, EDDS application dramatically enhanced the root and shoot Ni concentration from 665 and 644 to 1339 and 1338 mg kg?1, respectively. Combination of Ni + EDDS induced alterations in biochemical parameters of plants. EDDS addition posed pessimistic effects on growth, biomass, photosynthetic activity and protein content of the plants. Besides, application of EDDS stimulated the generation of superoxide anion, H2O2 content and MDA level. However, EDDS assisted mount in antioxidant activities (superoxide dismutase, catalase and glutathione peroxidase) considerably neutralised the toxicity induced by reactive oxygen species in plant tissues. The results revealed EDDS efficacy to ameliorate the performance of antioxidant enzymes and improved Ni translocation in plant tissues, thus strongly marked its affinity to be used together with C. didymus for Ni-phytoextraction. ? 2018 Elsevier LtdItem The impact of invasive Hyptis suaveolens on the floristic composition of the periurban ecosystems of Chandigarh, northwestern India(Elsevier GmbH, 2017) Sharma, A.; Batish, Daizy R.; Singh, H.P.; Jaryan, V.; Kohli, R.K.We investigated the impact of invasive Hyptis suaveolens on the natural vegetation and soil of the periurban ecosystems of Chandigarh (Northwestern India), in terms of declines in species number, importance value index (IVI), richness, diversity, evenness, and changes in soil pH, conductivity and organic matter. The number of species declined by 46?52% in the areas massively invaded by H. suaveolens. The richness, diversity, dominance and evenness of species were severely reduced in the invaded areas compared to uninvaded areas. The reasons for this strong impact may be attributed to the vigorous growth of the weed in the invaded areas. Invaded areas were characterized by high cover of the exotic species. Several economically important species like Justicia adhatoda, Anisomeles indica, Carissa carandas, Dioscorea deltoidea, Murraya koenigii and Paspalidium flavidum were conspicuously absent in the invaded areas, though present in the uninvaded areas. Absence of these species in the areas invaded by H. suaveolens may pose socio-economic problems for the local people. Further, alterations were also noticed in the pH, conductivity, organic carbon and organic matter of the soil of invaded areas. Based on these observations, it was concluded that invasion of H. suaveolens has a marked influence on the vegetation of periurban ecosystems, and causes depletion of several economically important species. The present study calls for an immediate action for the management of this noxious alien weed. ? 2017 Elsevier GmbHItem In silico binding mechanism prediction of benzimidazole based corticotropin releasing factor-1 receptor antagonists by quantitative structure activity relationship, molecular docking and pharmacokinetic parameters calculation(Taylor and Francis Ltd., 2018) Kumar, N.; Mishra, S.S.; Sharma, C.S.; Singh, H.P.; Kalra, S.Despite the various research efforts toward the treatment of stress-related disorders, the drug has not yet launched last 20?years. Corticotropin releasing factor-1 receptor antagonists have been point of great interest in stress-related disorders. In the present study, we have selected benzazole scaffold-based compounds as corticotropin releasing factor-1 antagonists and performed 2D and 3D QSAR studies to identify the structural features to elucidating the binding mechanism prediction. The best 2D QSAR model was obtained through multiple linear regression method with r2 value of.7390, q2 value of.5136 and pred_r2 (predicted square correlation coefficient) value of.88. The contribution of 2D descriptor, T_2_C_1 was 60% (negative contribution) and 4pathClusterCount was 40.24% (positive contribution) in enhancing the activity. Also 3D QSAR model was statistically significant with q2 value of.9419 and q2_se (standard error of internal validation) value of.19. Statistical parameters results prove the robustness and significance of both models. Further, molecular docking and pharmacokinetic analysis was performed to explore the scope of investigation. Docking results revealed that the all benzazole compounds show hydrogen bonding with residue Asn283 and having same hydrophobic pocket (Phe286, Leu213, Ile290, Leu287, Phe207, Arg165, Leu323, Tyr327, Phe284, and Met206). Compound B14 has higher activity compare to reference molecules. Most of the compounds were found within acceptable range for pharmacokinetic parameters. This work provides the extremely useful leads for structural substituents essential for benzimidazole moiety to exhibit antagonistic activity against corticotropin releasing factor-1 receptors. ? 2017 Informa UK Limited, trading as Taylor & Francis Group.Item Phenological behaviour of Parthenium hysterophorus in response to climatic variations according to the extended BBCH scale(Blackwell Publishing Ltd, 2017) Kaur, A.; Batish, Daizy R.; Kaur, S.; Singh, H.P.; Kohli, R.K.Considering the importance of ecological and biological traits in imparting invasive success to the alien species, the phenological behaviour of an alien invasive weed Parthenium hysterophorus was documented according to the extended BBCH scale in four different seasons. A phenological calendar was prepared using both two- and three- digit coding system, precisely describing the developmental stages of the weed. The phenological documentation is further supplemented with the dates corresponding to a particular growth stage, pictures of the representative growth stages and meteorological data of all the four seasons. Results revealed that the phenology of the weed altered in response to the changing temperature and humidity conditions but no apparent climatic condition could inhibit its germination or flowering. However, the emergence of inflorescence was highly sensitive to the temperature/photoperiodic conditions. Variations in the phenological traits of P. hysterophorus with changing environmental conditions explain the acclimatisation potential of the weed permitting its vast spread in the non-native regions. Since the given phenological illustrations are accurate, unambiguous and coded as per an internationally recognised scale, they could be exploited for agronomic practices, weed management programmes, and research purposes. ? 2017 Association of Applied BiologistsItem Phytotoxicity and cytotoxicity of Citrus aurantiifolia essential oil and its major constituents: Limonene and citral(Elsevier B.V., 2017) Fagodia, S.K.; Singh, H.P.; Batish, Daizy R.; Kohli, R.K.The essential oils are fast emerging as the source of natural herbicides owing to their environmentally benign properties. The focus of the present study, thus, was to investigate the phytotoxicity and cytotoxicity of Citrus aurantiifolia oil, and its major constituents-citral and limonene. C. aurantiifolia oil was selected due to its extreme commercialisation and safe nature. GC?MS analysis revealed that C. aurantiifolia oil is rich in monoterpenes (83.93%), with limonene (40.92%) and citral (27.46%) as the major compounds. Phytotoxicity was assessed against three agricultural weeds, Avena fatua, Echinochloa crus-galli and Phalaris minor, at concentration ranging from 0.10?1.50?mg/ml. Percent germination, IC50 value and seedling growth (root and coleoptile length) were significantly reduced in a dose-response manner. C. aurantiifolia oil, citral and limonene caused alteration in the cell cycle of Allium cepa root meristematic cells as evidenced by decrease in mitotic index (MI) and increase in chromosomal aberrations at progressive concentrations (0.01?0.10?mg/ml) and time periods (3?h and 24?h). Cytotoxic evaluation confirmed mitodepressive effect of the tested volatiles though the intensity was variable. Overall, citral was the most toxic followed by C. aurantiifolia oil and limonene. The significant phytotoxic activity of C. aurantiifolia oil and citral suggests the possibility of being developed into eco-friendly and acceptable products for weed management in agriculture system. ? 2017 Elsevier B.V.Item Retraction notice to "Bioaccumulation and physiological responses to lead (Pb) in Chenopodium murale L."[YEESA(2018)83-90](Academic Press, 2018) Sidhu, G.P.S.; Bali, A.S.; Bhardwaj, R.; Singh, H.P.; Batish, Daizy R.; Kohli, R.K.Available online This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Author Gagan Preet Singh. The corresponding author Gagan Preet Singh acknowledged Ravinder Kumar Kohli as one of the co-authors, whereas RK Kohli reported that he is neither the author nor part of the communication of this paper.Item Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae)(Academic Press, 2017) Sidhu, G.P.S.; Singh, H.P.; Batish, Daizy R.; Kohli, R.K.The potential of a wild, unpalatable plant Coronopus didymus was investigated for the first time in terms of its capability to tolerate and accumulate cadmium (Cd) for phytoremediation purposes. A screenhouse experiment for 6 weeks was conducted to evaluate the effect of Cd from 100 to 400?mg?kg?1 on growth, biomass, photosynthetic apparatus, Cd uptake and accumulation in C. didymus plants. Application of Cd facilitates the growth of the plants whereas at higher levels a slight reduction was noticed. The concentration of Cd in roots and shoots reached a maximum of 867.2 and 864.5?mg?kg?1 DW respectively, at 400?mg?kg?1?Cd treatment. Cd exposure increased the generation of superoxide anion (O2??), H2O2 content, MDA level and antioxidative response (SOD, CAT and POD) in roots and shoots of C. didymus. However, a slight decline in SOD and CAT activities were noticed in roots at highest Cd treatment (400?mg?kg?1). The bioconcentration (BCF) values for all the concentrations were ?1 and the translocation factor (TF) values were ? 1 at lower level but reached 1 at highest Cd concentration. Thus, C. didymus satisfies the conditions required for hyperaccumulator plants and may be practically employed to alleviate Cd from contaminated soils. ? 2016 Elsevier Inc.