Browsing by Author "Singh, Harminder Pal"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Item Allelopathic Effect of Leaves of Invasive tree Broussonetia papyrifera against some crop plants(AdhyaBiosciences, 2016) Negi, Anjana; Batish, Daizy R.; Singh, Harminder Pal; Kohli, R.K.Allelopathic effect of aqueous extracts of leaves of Broussonetia papyrifera (L.) Vent. was studied on germination and seedling growth of Triticum aestivum L. and Oryza sativa L. under laboratory conditions. The seed germination, seedling length, seedling dry weight and total chlorophyll content were reduced with the increasing treatment of concentration (0.5, 1, 2 and 4%) of B. papyrifera leaf extract as compared to the control. The inhibitory effect was more pronounced on the root length than on coleoptile length. The extracts were rich in phenolic compounds, which are the ubiquitous allelochemicals and often implicated in allelopathy. The study concludes that B. papyrifera exhibits allelopathy through the release of phenolics from its leaves.Item Allelopathic effect of Pinus roxburghii on an understorey plant, Bidens pilosa(AdhyaBiosciences, 2016) Sharma, Neel Kanta; Batish, Daizy R.; Singh, Harminder Pal; Kohli, R.K.Allelopathic effect of Pinus roxburghii was studied on Bidens pilosa through laboratory and greenhouse experiments. The aqueous extracts of green needles, needle litter and bark were found to inhibit germination and initial growth of B. pilosa in laboratory bioassays. The inhibitory effect on germination root length, shoot length and biomass was also observed on amendment of powdered needle litter in soil in greenhouse pots. The inhibitory effect increased with increase in conc. of extracts or amount of litter amended. The amended soil was found to be rich in phenolics, the known potent allelochemics. The study indicates that such interactions may also be operational in forests of P. roxburghii.Item Allelopathic potential of needle litter extracts of Pinus roxburghii on germination and early growth of Zea mays and Echinochloa crus-galli(Indian Journal of Applied Research (IJAR), 2016) Sharma, Neel Kanta; Batish, Daizy R.; Singh, Harminder Pal; Kohli, R.K.The needle litter of Pinus roxburghii, a common conifer of Himalayan region was investigated for allelopathic potential against crop plant Zea mays and weed Echinochloa crus-galli. The aqueous extracts from litter enhanced the growth of Z. mays slightly at lower concentrations but showed inhibitory effect at higher concentrations. However, the effect on E. crus- galli was inhibitory at all the concentrations. Overall, the effect on the weed species was more pronounced as compared to the crop species. The findings suggest that the litter of P. roxburghii possesses allelopathic potential and can serve as an important bioresource for management of weeds by utilizing the principles of allelopathy. However, further detailed field studies are needed.Item Allelopathic Potential of the Essential Oil of Wild Marigold (Tagetes minuta L.) Against Some Invasive Weeds(The Science Publisher, 2015) Arora, Komal; Batish, Daizy R.; Singh, Harminder Pal; Kohli, R.K.Tagetes minuta is an aromatic plant native to Tropical America. It exhibits wide range of biological activity against insects, nematodes, microbes including medicinal properties. It also creates nuisance for agricultural land. This may be attributed to its allelopathic properties. Therefore, the present study investigated the allelopathic potential of volatile oil of T. minuta on other invasive weeds - Chenopodium murale L., Phalaris minor Retz. and Amaranthus viridis L. It was observed that the volatile oil of T. minuta significantly reduced the germination, growth, chlorophyll content and respiratory ability of recipient weeds in a dose dependent manner. Mitotic studies revealed a complete arrest of mitotic activity in cells of treated root tips of Allium cepa with various aberrations like distorted, trinucleolated and binucleated cells. Thus, it can be concluded that the volatile oil of T. minuta shows allelopathic potential on other plants and this property could be further explored for weed management.Item Appraising the role of environment friendly chelants in alleviating lead by Coronopus didymus from Pb-contaminated soils(Elsevier Ltd, 2017) Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R.; Kohli, R.K.In a screenhouse experiment, we investigated the role of two environment friendly chelants, Ammonium molybdate and EDDS for Pb mobilisation and its extraction by Coronopus didymus under completely randomized controlled conditions. Seedlings of C.?didymus were grown in pots having Pb-contaminated soil (1200 and 2200?mg?kg?1) for 6 weeks. Plants were harvested, 1 week after the addition of A. molybdate and EDDS. Results revealed that A. molybdate and EDDS enhanced the uptake and accumulation of Pb in roots and shoots of C.?didymus. At 2200?mg?kg?1 Pb level, compared to Pb-alone treatment, the maximal concentration of Pb was increased upto ?10% and ?19%, in roots whereas ?8% and ?18%, respectively, in shoots on addition of 2?mmol?kg?1 A. molybdate and EDDS. Additionally, Pb?+?EDDS treatments enhanced the plant biomass and triggered strong antioxidative response, more efficaciously than Pb?+?A. molybdate and Pb-alone treated plants. In this study, EDDS relative to A. molybdate was more efficient in mobilising and extracting Pb from soil. Although, EDDS followed by A. molybdate had good efficacy in mitigating Pb from contaminated soils but C.?didymus itself has the inherent affinity to tolerate and accumulate Pb from contaminated soils and hence in future, can be used either alone or with some other eco-friendly amendments for soil remediation purposes. ? 2017 Elsevier LtdItem Chemical Characterization and Phytotoxicity of Foliar Volatiles and Essential Oil of Callistemon viminalis(Har Krishan Bhalla and Sons, 2017) Bali, Aditi Shreeya; Batish, Daizy R.; Singh, Harminder Pal; Kaur, Shalinder; Kohli, R.K.We investigated the chemical composition and phytotoxicity of foliar volatiles (directly released from the macerated leaves) and essential oil extracted from the leaves of Callistemon viminalis against four weed species. Essential oil (EO) and foliar volatiles caused reduction in germination, seedling growth and dry matter accumulation in Bidens pilosa, Cassia occidentalis, Echinochloa crus-galli and Phalaris minor. Bidens pilosa was found to be the most sensitive towards foliar volatiles and EO, whereas C. occidentalis was the least sensitive. The chemical analyses of foliar volatiles and EO revealed the presence of 1,8-cineole and ?-pinene as the main monoterpenes. The study concludes that volatile components of C. viminalis possess phytotoxicity against weeds and thus may hold promise for the management of weeds under sustainable agriculture. ? 2017, Har Krishan Bhalla & Sons.Item Comparative account of allelopathic potential of essential oil of Tagetes minuta L. and its major component cis-β-Ocimene(AdhyaBiosciences, 2016) Arora, Komal; Batish, Daizy R.; Singh, Harminder Pal; Kohli, R.K.The study aims to explore the chemical composition of volatile essential oil of Tagetes minuta and comparison of its allelopathic potential with cis-β-ocimene, a major component of oil. T. minuta L. is an exotic aromatic plant found growing in northern plains and western Himalayas in India. The water distilled essential oil from aerial parts of T. minuta (at flowering stage) was analyzed by GC-MS. The analysis revealed 27 compounds representing 95.73% of the oil. cis-b-Ocimene (44.56%), dihydrotagetone (28.52%), limonene (3.99%) and tagetone (7.42%) were its major compounds. A comparison of allelopathic effect of cis-b-ocimene was made with T. minuta oil using Cassia occidentalis L., a common wasteland weed, as test plant. Laboratory study included growth studies in the form of germination, seedling length and dry weight of test plant under both treatments i.e. T. minuta oil and cis-b-ocimene. The inhibitory effect of ocimene was more significant as compared to oil. However, highest concentration (20µg/cc) of both treatments was found to be inhibitory withItem Effect of lead on oxidative status, antioxidative response and metal accumulation in Coronopus didymus(Elsevier Masson SAS, 2016) Sidhu, Gagan Preet Singh; Singh, Harminder Pal; Batish, Daizy R.; Kohli, R.K.A screenhouse experiment was conducted to assay the effect of Lead (Pb) on oxidative status, antioxidative response and metal accumulation in Coronopus didymus after 6 weeks. Results revealed a good Pb tolerance and accumulation potential of C. didymus towards the increasing Pb concentrations (500, 900, 1800, 2900 mg kg-1) in soil. The content of Pb in roots and shoots elevated with higher Pb levels and reached a maximum of 3684.3 mg kg-1 and 862.8 mg kg-1 Pb dry weight, respectively, at 2900 mg kg-1 treatment. Pb exposure stimulated electrolyte leakage, H2O2 level, MDA content and the activities of antioxidant machinery (SOD, CAT, APX, GPX and GR). However, at the highest Pb concentration, the activities of SOD and CAT declined. The H2O2 level and MDA content in roots increased significantly up to ~500% and 213%, respectively, over the control, at 2900 mg kg-1 Pb treatment. Likewise, concurrent findings were noticed in shoots of C. didymus, with the increasing Pb concentration. The present work suggests that C. didymus exhibited a good accumulation potential for Pb and can tolerate Pb-induced oxidative stress by an effective antioxidant defense mechanism. ? 2016.Item EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism(Springer, 2016) Kumar, Arvind; Singh, Harminder Pal; Batish, Daizy R.; Kaur, Shalinder; Kohli, R.K.The present study investigated the impact of 1800-MHz electromagnetic field radiations (EMF-r), widely used in mobile communication, on the growth and activity of starch-, sucrose-, and phosphate-hydrolyzing enzymes in Zea mays seedlings. We exposed Z. mays to modulated continuous wave homogenous EMF-r at specific absorption rate (SAR) of 1.69±0.0 × 10−1 W kg−1 for ½, 1, 2, and 4 h. The analysis of seedlings after 7 days revealed that short-term exposure did not induce any significant change, while longer exposure of 4 h caused significant growth and biochemical alterations. There was a reduction in the root and coleoptile length with more pronounced effect on coleoptile growth (23 % reduction on 4-h exposure). The contents of photosynthetic pigments and total carbohydrates declined by 13 and 18 %, respectively, in 4-h exposure treatments compared to unexposed control. The activity of starch-hydrolyzing enzymes—α- and β-amylases—increased by ∼92 and 94 %, respectively, at an exposure duration of 4 h, over that in the control. In response to 4-h exposure treatment, the activity of sucrolytic enzymes—acid invertases and alkaline invertases—was increased by 88 and 266 %, whereas the specific activities of phosphohydrolytic enzymes (acid phosphatases and alkaline phosphatases) showed initial increase up to ≤2 h duration and then declined at >2 h exposure duration. The study concludes that EMF-r-inhibited seedling growth of Z. mays involves interference with starch and sucrose metabolism.Item Eugenol-inhibited root growth in Avena fatuainvolves ROS-mediated oxidative damage(Elsevier, 2015) Ahuja, Nitin; Singh, Harminder Pal; Batish, Daizy. R.; Kohli, R.K.,Plant essential oils and their constituent monoterpenes are widely known plant growth retardants but their mechanism of action is not well understood. We explored the mechanism of phytotoxicity of eugenol, a monoterpenoid alcohol, proposed as a natural herbicide. Eugenol (100–1000 µM) retarded the germination of Avena fatua and strongly inhibited its root growth compared to the coleoptile growth. We further investigated the underlying physiological and biochemical alterations leading to the root growth inhibition. Eugenol induced the generation of reactive oxygen species (ROS) leading to oxidative stress and membrane damage in the root tissue. ROS generation measured in terms of hydrogen peroxide, superoxide anion and hydroxyl radical content increased significantly in the range of 24 to 144, 21 to 91, 46 to 173% over the control at 100 to 1000 µM eugenol, respectively. The disruption in membrane integrity was indicated by 25 to 125% increase in malondialdehyde (lipid peroxidation byproduct), and decreased conjugated diene content (~10 to 41%). The electrolyte leakage suggesting membrane damage increased both under light as well as dark conditions measured over a period from 0 to 30 h. In defense to the oxidative damage due to eugenol, a significant upregulation in the ROS-scavenging antioxidant enzyme machinery was observed. The activities of superoxide dismutases, catalases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases were elevated by ~1.5 to 2.8, 2 to 4.3, 1.9 to 5.0, 1.4 to 3.9, 2.5 to 5.5 times, respectively, in response to 100 to 1000 µM eugenol. The study concludes that eugenol inhibits early root growth through ROS-mediated oxidative damage, despite an activation of the antioxidant enzyme machinery.Item Exogenous Nitric Oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots(Public Library of Science, 2015) Kaur, Gurpreet; Singh, Harminder Pal; Daizy R. Batish; Mahajan, Priyanka; Kohli, R.K.; Valbha, RishiNitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 ?M) alone and in combination with SNP (100 ?M) was given to hydroponically grown wheat roots for a period of 0-8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. ? 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Item Exogenous nitric oxide (NO) interferes with lead (pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots,(PLOS ONE, 2015) Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Kohli, R.K.; Rishi, ValbhaNitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 ?M) alone and in combination with SNP (100 ?M) was given to hydroponically grown wheat roots for a period of 0�8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure.Item Phytoremediation of lead by a wild, non-edible Pb accumulator Coronopus didymus (L.) Brassicaceae(Taylor and Francis Inc., 2018) Sidhu, Gagan Preet Singh; Bali, Aditi Shreeya; Singh, Harminder Pal; Batish, Daizy R.; Kohli, R.K.Coronopus didymus was examined in terms of its ability to remediate Pb-contaminated soils. Pot experiments were conducted for 4 and 6?weeks to compare the growth, biomass, photosynthetic efficiency, lead (Pb) uptake, and accumulation by C. didymus plants. The plants grew well having no visible toxic symptoms and 100% survivability, exposed to different Pb-spiked soils 100, 350, 1500, and 2500?mg kg?1, supplied as lead nitrate. After 4?weeks, root and shoot concentrations reached 1652 and 502?mg Pb kg?1 DW, while after 6?weeks they increased up to 3091 and 527?mg Pb kg?1 DW, respectively, at highest Pb concentration. As compared to the 4?week experiments, the plant growth and biomass yield were higher after 6?weeks of Pb exposure. However, the chlorophyll content of leaves decreased but only a slight decline in photosynthetic efficiency was observed on exposure to Pb at both 4 and 6?weeks. The Pb accumulation was higher in roots than in the shoots. The bioconcentration factor of Pb was > 1 in all the plant samples, but the translocation factor was < 1. This suggested C. didymus as a good candidate for phytoremediation of Pb-contaminated soils and can be used for future remediation purposes. ? 2018 Taylor & Francis Group, LLC.Item Phytotoxic effects of volatile oil from Artemisia scoparia against weeds and its possible use as a bioherbicide(Elsevier, 2010) Kaur, Shalinder; Singh, Harminder Pal; Mittal, Sunil; Batish, Daizy R.; Kohli, R.K.A study was conducted to assess the bioherbicidal activity of volatile oil hydrodistilled from Artemisia scoparia Waldst et Kit. (red stem wormwood; Asteraceae) against five weed species, viz. Achyranthes aspera, Cassia occidentalis, Parthenium hysterophorus, Echinochloa crus-galli, and Ageratum conyzoides. Emergence and seedling growth (in terms of root and shoot length) were significantly reduced in a dose–response bioassay conducted in sand impregnated with Artemisia oil (at ≥10, 25, and 50 μg Artemisia oil/g sand). In general, the root length was inhibited more as compared to the shoot length and the inhibitory effect was greatest in P. hysterophorus followed by A. conyzoides and least in C. occidentalis. Post-emergence application of Artemisia oil (2%, 4%, and 6%, v/v) on 6-week-old weed plants caused visible injury (1- and 7-days after spray) ranging from chlorosis to necrosis to complete wilting of plants. Among the sprayed test weeds, the effect was greatest on E. crus-galli and P. hysterophorus. Artemisia oil treatment resulted in a loss of chlorophyll content and cellular respiration in test weeds thereby implying interference/impairment with photosynthetic and respiratory metabolism. Artemisia oil caused a severe electrolyte leakage from E. crus-galli (a monocot) and C. occidentalis (a dicot) indicating membrane disruption and loss of integrity. The study concludes that Artemisia oil has bioherbicidal properties as it causes severe phytotoxicity and interferes with the growth and physiological processes of some weed species.Item Phytotoxicity and weed management potential of leaf extracts of Callistemon viminalis against the weeds of rice(Springer, 2017) Bali, Aditi Shreeya; Batish, Daizy R.; Singh, Harminder Pal; Kaur, Shalinder; Kohli, R.K.We explored the phytotoxicity of Callistemon viminalis leaf extracts (LE; 0.5, 1, 2 and 4%) towards germination and early growth of rice (Oryza sativa L.) and its associated weeds [Echinochloa crus-galli (L.) Beauv., Cyperus rotundus L., Leptochloa chinensis (L.) Nees. and Commelina benghalensis L.], under laboratory and greenhouse conditions. In a laboratory assay, leaf extracts (4%) inhibited germination (40–52%), root length (36–85%), shoot length (37–64%), dry weight (27–67%) and chlorophyll content (20–42%) in all the weeds. Under greenhouse conditions, 2% leaf extracts (LE) + Butachlor (well-known herbicide; H; 50% E.C.; 2:1, v/v) severely affected the emergence and biomass of all the weeds. However, there was no effect on the growth and yield attributes of rice. Moreover, upon 2% LE + H treatment, the plant height and number of grains per plant increased significantly and the effect was comparable to the recommended dose of Butachlor. The results suggested the presence of water-soluble allelochemicals (mainly phenolics) in the leaf extracts that could be responsible for the observed inhibitory effect. Based on the study, it could be concluded that C. viminalis leaf extracts hold good potential for possible weed management, and further research could be done to develop it as an alternative to synthetic herbicides in sustainable agriculture under field conditions.