Browsing by Author "Singh, Inderjit"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.)(Springer Science and Business Media Deutschland GmbH, 2022-08-02T00:00:00) Saini, Rashmi; Das, Rangman; Adhikary, Arindam; Kumar, Rashpal; Singh, Inderjit; Nayyar, Harsh; Kumar, SanjeevKey message: Priming alleviates membrane damage, chlorophyll degradation along with cryoprotectants accumulation during chilling stress that leads to improved reproductive functioning and increased seed yield. Abstract: Chilling temperatures below 15��C have severe implications on the reproductive growth and development of chickpea. The abnormal reproductive development and subsequent reproductive failure lead to substantial yield loss. We exposed five chickpea cultivars (PBG1, GPF2, PDG3, PDG4, and PBG5) to drought stress (Priming) during the vegetative stage and analyzed for chilling tolerance during the reproductive stage. These varieties were raised in the fields in two sets: one set of plants were subjected to drought stress at the vegetative stage for 30�days (priming) and the second set of plants were irrigated regularly (non-primed). The leaf samples were harvested at the flowering, podding, and seed filling stage and analyzed for membrane damage, water status, chlorophyll content, cellular respiration, and certain cryoprotective solutes. The reproductive development was analyzed by accessing pollen viability, in vivo and in vitro germination, pollen load, and in vivo pollen tube growth. Principal component analysis (PCA) revealed that priming improved membrane damage, chlorophyll b degradation, and accumulation of cryoprotectants in GPF2, PDG3, and PBG5 at the flowering stage (< 15��C). Pearson's correlation analysis showed a negative correlation with the accumulation of proline and carbohydrates with flower, pod, and seed abortion. Only, PBG5 responded best to priming while PBG1 was worst. In PBG5, priming resulted in reduced membrane damage and lipid peroxidation, improved water content, reduced chlorophyll degradation, and enhanced cryoprotective solutes accumulation, which led to increased reproductive functioning and finally improved seed yield and harvest index. Lastly, the priming response is variable and cultivar-specific but overall improve plant tolerance. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Drought priming induces chilling tolerance and improves reproductive functioning in chickpea (Cicer arietinum L.)(Springer Science and Business Media Deutschland GmbH, 2022-08-02T00:00:00) Saini, Rashmi; Das, Rangman; Adhikary, Arindam; Kumar, Rashpal; Singh, Inderjit; Nayyar, Harsh; Kumar, SanjeevKey message: Priming alleviates membrane damage, chlorophyll degradation along with cryoprotectants accumulation during chilling stress that leads to improved reproductive functioning and increased seed yield. Abstract: Chilling temperatures below 15��C have severe implications on the reproductive growth and development of chickpea. The abnormal reproductive development and subsequent reproductive failure lead to substantial yield loss. We exposed five chickpea cultivars (PBG1, GPF2, PDG3, PDG4, and PBG5) to drought stress (Priming) during the vegetative stage and analyzed for chilling tolerance during the reproductive stage. These varieties were raised in the fields in two sets: one set of plants were subjected to drought stress at the vegetative stage for 30�days (priming) and the second set of plants were irrigated regularly (non-primed). The leaf samples were harvested at the flowering, podding, and seed filling stage and analyzed for membrane damage, water status, chlorophyll content, cellular respiration, and certain cryoprotective solutes. The reproductive development was analyzed by accessing pollen viability, in vivo and in vitro germination, pollen load, and in vivo pollen tube growth. Principal component analysis (PCA) revealed that priming improved membrane damage, chlorophyll b degradation, and accumulation of cryoprotectants in GPF2, PDG3, and PBG5 at the flowering stage (< 15��C). Pearson's correlation analysis showed a negative correlation with the accumulation of proline and carbohydrates with flower, pod, and seed abortion. Only, PBG5 responded best to priming while PBG1 was worst. In PBG5, priming resulted in reduced membrane damage and lipid peroxidation, improved water content, reduced chlorophyll degradation, and enhanced cryoprotective solutes accumulation, which led to increased reproductive functioning and finally improved seed yield and harvest index. Lastly, the priming response is variable and cultivar-specific but overall improve plant tolerance. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Drought priming triggers diverse metabolic adjustments and induces chilling tolerance in chickpea (Cicer arietinum L.)(Elsevier Masson s.r.l., 2022-11-30T00:00:00) Saini, Rashmi; Adhikary, Arindam; Juneja, Sumandeep; Kumar, Rashpal; Singh, Inderjit; Nayyar, Harsh; Kumar, SanjeevChickpea (Cicer arietinum L.) suffers from chilling stress at the reproductive stage (<15 �C) which leads to significant yield loss. This study presents a comprehensive plant response to drought priming and its effect on chilling tolerance during the reproductive stage in two chickpea cultivars PBG1 and PBG5. Lipidome profiling (Fatty acid methyl esters analysis), metabolome profiling (GC-MS based untargeted analysis), fatty acid desaturases and antioxidative gene expression (qRT-PCR) were analyzed to monitor physiological and biochemical events after priming during flowering, podding and seed filling stages. Drought priming alleviated membrane damage and chlorophyll degradation by increasing membrane unsaturated fatty acids (18:3) along with up-regulation of various fatty acid desaturases (CaFADs) genes and antioxidative machinery during flowering and improved seed yield in PBG5. PCA, HCA, and KEGG pathway analysis of 87 identified metabolites showed that metabolites were regulated differently in both cultivars under non-primed and primed conditions. The plant response was more apparent at flowering and podding stages which coincided with chilling temperature (<15 �C). Drought priming stimulated many important genes, especially FADs, antioxidative proteins and accumulation of key metabolites (proline and TCA intermediates) required for defense especially in PBG5. This explains that plant's response to drought priming not only depends on developmental stage, and temperature regime (<15 �C) but also on the genotypic-specificity. � 2022 Elsevier Masson SASItem Drought priming triggers diverse metabolic adjustments and induces chilling tolerance in chickpea (Cicer arietinum L.)(Elsevier Masson s.r.l., 2022-11-30T00:00:00) Saini, Rashmi; Adhikary, Arindam; Juneja, Sumandeep; Kumar, Rashpal; Singh, Inderjit; Nayyar, Harsh; Kumar, SanjeevChickpea (Cicer arietinum L.) suffers from chilling stress at the reproductive stage (<15 �C) which leads to significant yield loss. This study presents a comprehensive plant response to drought priming and its effect on chilling tolerance during the reproductive stage in two chickpea cultivars PBG1 and PBG5. Lipidome profiling (Fatty acid methyl esters analysis), metabolome profiling (GC-MS based untargeted analysis), fatty acid desaturases and antioxidative gene expression (qRT-PCR) were analyzed to monitor physiological and biochemical events after priming during flowering, podding and seed filling stages. Drought priming alleviated membrane damage and chlorophyll degradation by increasing membrane unsaturated fatty acids (18:3) along with up-regulation of various fatty acid desaturases (CaFADs) genes and antioxidative machinery during flowering and improved seed yield in PBG5. PCA, HCA, and KEGG pathway analysis of 87 identified metabolites showed that metabolites were regulated differently in both cultivars under non-primed and primed conditions. The plant response was more apparent at flowering and podding stages which coincided with chilling temperature (<15 �C). Drought priming stimulated many important genes, especially FADs, antioxidative proteins and accumulation of key metabolites (proline and TCA intermediates) required for defense especially in PBG5. This explains that plant's response to drought priming not only depends on developmental stage, and temperature regime (<15 �C) but also on the genotypic-specificity. � 2022 Elsevier Masson SASItem Pseudomonas citronellolis alleviates arsenic toxicity and maintains cellular homeostasis in chickpea (Cicer arietinum L.)(Elsevier Masson s.r.l., 2022-05-19T00:00:00) Adhikary, Arindam; Saini, Rashmi; Kumar, Rashpal; Singh, Inderjit; Ramakrishna, Wusirika; Kumar, SanjeevArsenic is a hazardous metalloid that causes detrimental effects on plant growth and metabolism. Plants accumulate arsenic in edible parts that consequently enter the food chain leading to many health problems. Metal tolerant plant growth-promoting bacteria (PGPB) ameliorate heavy metal toxicity. In this study, the effect of arsenic (As5+) and the role of PGPB Pseudomonas citronellolis (PC) in mitigating As5+ toxicity and associated metabolic alterations in chickpea were assessed. Five chickpea varieties (PBG1, GPF2, PDG3, PDG4 and PBG5) were evaluated for arsenic accumulation, translocation, and its interference with metabolic and defense processes. As5+ (40 mg kg?1) interfered with plant metabolism and enhanced the antioxidative and carbohydrate metabolizing enzyme's activity but PC treatment maintained the activity at par with control. PC also facilitated the accumulation of As5+ in the root system and restricted its translocation to the shoot. Further, to map the metabolic changes, Gas chromatography Mass Spectroscopy (GC-MS) based metabolite profiling and gene expression analysis (qRT-PCR) were performed in the best and worst-performing chickpea varieties (PBG1 and PBG5). 48 metabolites of various metabolic pathways (amino acid, carbohydrate, and fatty acid) were altered in As5+ and PC treatment. Gene expressions showed correlation with biochemical analysis of the antioxidative enzymes and carbohydrate metabolizing enzymes while PC treatment improved chlorophyll biosynthesis enzyme CaDALA expression in As5+ treated plants. Therefore, PC mitigates As5+ toxicity by restricting it in the roots thereby maintaining the cellular homeostasis under As5+ stress in chickpeas. � 2022 Elsevier Masson SAS