Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, Ipsa"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Clinical potential of long non-coding RNA LINC01133 as a promising biomarker and therapeutic target in cancers
    (Newlands Press Ltd, 2022-02-23T00:00:00) Sharma, Uttam; Barwal, Tushar Singh; Murmu, Masang; Acharya, Varnali; Pant, Neha; Dey, Damayanti; Vivek; Gautam, Ashima; Bazala, Sonali; Singh, Ipsa; Azzouz, Farah; Bishayee, Anupam; Jain, Aklank
    Recently, long intergenic non-protein coding RNA 01133 (LINC01133) was identified as a novel transcript in cancers. It modulates various hallmarks of cancers and acts as oncogenic in some cancers while tumor-suppressive in others. Furthermore, the expression of LINC01133 correlates with tumor size, advanced tumor node metastasis stage and lymphatic node metastasis, Ki-67 levels and overall survival of patients. Herein, the authors provide an in-depth analysis describing how LINC01133 modulates the multiple cancer-associated signaling pathways and the pathogenesis of various malignancies and treatment regimens. Based on the role played by LINC01133, the authors propose LINC01133 as both a potential biomarker and a therapeutic target in cancer. � 2022 Future Medicine Ltd.
  • No Thumbnail Available
    Item
    Micrornas and long noncoding rnas as novel therapeutic targets in estrogen receptor-positive breast and ovarian cancers
    (MDPI, 2021-04-15T00:00:00) Barwal, Tushar Singh; Sharma, Uttam; Bazala, Sonali; Singh, Ipsa; Jain, Manju; Prakash, Hridayesh; Shekhar, Shashank; Sandberg, Elise N.; Bishayee, Anupam; Jain, Aklank
    Aromatase inhibitors (AIs) such as anastrozole, letrozole, and exemestane have shown to prevent metastasis and angiogenesis in estrogen receptor (ER)-positive breast and ovarian tumors. They function primarily by reducing estrogen production in ER-positive post-menopausal breast and ovarian cancer patients. Unfortunately, current AI-based therapies often have detrimental side-effects, along with acquired resistance, with increased cancer recurrence. Thus, there is an urgent need to identify novel AIs with fewer side effects and improved therapeutic efficacies. In this regard, we and others have recently suggested noncoding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), as potential molecular targets for utilization in modulating cancer hallmarks and overcoming drug resistance in several cancers, including ER-positive breast and ovarian cancer. Herein, we describe the disruptive functions of several miRNAs and lncRNAs seen in dysregulated cancer metabolism, with a focus on the gene encoding for aromatase (CYP19A1 gene) and estrogen synthesis as a novel therapeutic approach for treating ER-positive breast and ovarian cancers. Furthermore, we discuss the oncogenic and tumor-suppressive roles of several miRNAs (oncogenic miRNAs: MIR125b, MIR155, MIR221/222, MIR128, MIR2052HG, and MIR224; tumor-suppressive miRNAs: Lethal-7f, MIR27B, MIR378, and MIR98) and an oncogenic lncRNA (MIR2052HG) in aromatase-dependent cancers via transcriptional regulation of the CYP19A1 gene. Additionally, we discuss the potential effects of dysregulated miRNAs and lncRNAs on the regulation of critical oncogenic molecules, such as signal transducer, and activator of transcription 3, ?-catenin, and integrins. The overall goal of this review is to stimulate further research in this area and to facilitate the development of ncRNA-based approaches for more efficacious treatments of ER-positive breast and ovarian cancer patients, with a slight emphasis on associated treatment� delivery mechanisms. � 2021 by the authors. Licensee MDPI, Basel, Switzerland.
  • No Thumbnail Available
    Item
    Potential clinical application of lncRNAs in pediatric cancer
    (Elsevier, 2022-01-28T00:00:00) Chhabra, Ravindresh; Neyol, Priyasha; Bazala, Sonali; Singh, Ipsa; Murmu, Masang; Sharma, Uttam; Barwal, Tushar Singh; Jain, Aklank
    Cancer is the leading cause of death by disease in children globally. The childhood cancer burden is more than 80% in the low- and middle-income countries, including India. In contrast to cancer in adults, the number of children diagnosed with cancer is far less but the children who survive cancer are more likely to face the negative consequences of chemotherapy and radiotherapy in their lifetime. The common childhood cancers include leukemia, neuroblastoma, osteosarcoma, retinoblastoma, rhabdomyosarcoma, and Wilms tumor. Long noncoding RNAs (lncRNAs) are a pervasive subset of noncoding RNAs. The high throughput sequencing studies estimate the number of lncRNAs to be more than 100, 000 but hardly 1% of them have been functionally characterized. The lncRNAs have a tissue-specific expression and a majority of them are functionally dysregulated in numerous physiological and pathological conditions, including cancer, thereby making them attractive therapeutic targets. Recently, their role has also been described in pediatric cancers. This chapter summarizes the current knowledge about dysregulated lncRNAs, their potential as biomarker and therapeutic targets, and their underlying molecular mechanisms in pediatric cancer. � 2022 Elsevier Inc. All rights reserved.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify