Browsing by Author "Singh, Karuna"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Circulating long non-coding RNA EWSAT1 acts as a liquid biopsy marker for esophageal squamous cell carcinoma: A pilot study(KeAi Communications Co., 2023-10-28T00:00:00) Uttam, Vivek; Rana, Manjit Kaur; Sharma, Uttam; Singh, Karuna; Jain, AklankThe widespread public health problem of esophageal squamous cell carcinoma (ESCC) is the cause of an increasing number of deaths each year due to delayed diagnosis. Therefore, we require specific and sensitive new biomarkers to manage ESCC better. The detection of diseases, such as cancer, can now be achieved through non-invasive circulating blood-based methods. Blood-based circulating non-coding RNAs, such as miRNA and lncRNA, have been extensively used as valuable markers for lung, esophageal, and breast cancer diagnostic purposes, as quoted in our previous research. Herein, we investigated the role of novel long non-coding RNA EWSAT1 as a blood-based liquid biopsy biomarker for the ESCC. Our findings indicate that EWSAT1 lncRNA has an increased tumor suppressive activity in ESCC, as it reduces by ?2.59-fold relative to healthy controls. Moreover, we established that EWSAT1 expression can significantly distinguish between clinicopathological characteristics, including age, gender, and lifestyle choices such as smoking, alcohol consumption, and drinking hot beverages among patients with ESCC and healthy individuals. In addition, the expression levels of lncRNA EWSAT1 could distinguish between individuals with more advanced ESCC cancer and those without it, as illustrated by the ROC curve (AUC = 0.7174, 95 % confidence intervals = 0.5901 to 0.8448, p-value = 0.001). Our in-silico prediction methods demonstrated that miR-873-5p is the direct target of EWSAT1, which competes with the tumor suppressor candidate 3 (TUSC3) and EGL-9 family hypoxia-inducible factor 3 (EGLN3) mRNAs through a sponging mechanism, creating the EWSAT1/miR-873-5p/mRNA axis. We have analyzed the role of EWSAT1 in various cellular processes and signaling pathways, including mTOR, Wnt, and MAPK signaling pathways. Circulating EWSAT1 can be used as a liquid biopsy marker for diagnosis of ESCC and has the potential to serve as an effective therapeutic biomarker, according to this pilot study. � 2023 The AuthorsItem Circulating Long Non-Coding RNAs LINC00324 and LOC100507053 as Potential Liquid Biopsy Markers for Esophageal Squamous Cell Carcinoma: A Pilot Study(Frontiers Media S.A., 2022-02-14T00:00:00) Sharma, Uttam; Barwal, Tushar Singh; Khandelwal, Akanksha; Rana, Manjit Kaur; Rana, Amrit Pal Singh; Singh, Karuna; Jain, AklankBackground: Despite the availability of advanced technology to detect and treat esophageal squamous cell carcinoma (ESCC), the 5-year survival rate of ESCC patients is still meager. Recently, long non-coding RNAs (lncRNAs) have emerged as essential players in the diagnosis and prognosis of various cancers. Objective: This pilot study focused on identifying circulating lncRNAs as liquid biopsy markers for the ESCC. Methodology: We performed next-generation sequencing (NGS) to profile circulating lncRNAs in ESCC and healthy individuals� blood samples. The expression of the top five upregulated and top five downregulated lncRNAs were validated through quantitative real-time PCR (qRT-PCR), including samples used for the NGS. Later, we explored the diagnostic/prognostic potential of lncRNAs and their impact on the clinicopathological parameters of patients. To unravel the molecular target and pathways of identified lncRNAs, we utilized various bioinformatics tools such as lncRnome, RAID v2.0, Starbase, miRDB, TargetScan, Gene Ontology, and KEGG pathways. Results: Through NGS profiling, we obtained 159 upregulated, 137 downregulated, and 188 neutral lncRNAs in ESCC blood samples compared to healthy individuals. Among dysregulated lncRNAs, we observed LINC00324 significantly upregulated (2.11-fold; p-value = 0.0032) and LOC100507053 significantly downregulated (2.22-fold; p-value = 0.0001) in ESCC patients. Furthermore, we found LINC00324 and LOC100507053 could discriminate ESCC cancer patients� from non-cancer individuals with higher accuracy of Area Under the ROC Curve (AUC) = 0.627 and 0.668, respectively. The Kaplan-Meier and log-rank analysis revealed higher expression levels of LINC00324 and lower expression levels of LOC100507053 well correlated with the poor prognosis of ESCC patients with a Hazard ratio of LINC00324 = 2.48 (95% CI: 1.055 to 5.835) and Hazard ratio of LOC100507053 = 4.75 (95% CI: 2.098 to 10.76)]. Moreover, we also observed lncRNAs expression well correlated with the age (>50 years), gender (Female), alcohol, tobacco, and hot beverages consumers. Using bioinformatics tools, we saw miR-493-5p as the direct molecular target of LINC00324 and interacted with the MAPK signaling pathway in ESCC pathogenesis. Conclusion: This pilot study suggests that circulating LINC00324 and LOC100507053 can be used as a liquid biopsy marker of ESCC; however, multicentric studies are still warranted. Copyright � 2022 Sharma, Barwal, Khandelwal, Rana, Rana, Singh and Jain.Item LINC00324 promotes cell proliferation and metastasis of esophageal squamous cell carcinoma through sponging miR-493-5p via MAPK signaling pathway(Elsevier Inc., 2022-12-06T00:00:00) Sharma, Uttam; Kaur Rana, Manjit; Singh, Karuna; Jain, AklankLong non-coding RNAs have been demonstrated to promote proliferation and metastasis via regulating the miRNA/mRNA regulatory axis in various malignancies. Based on our preliminary study, we investigated the mechanism of LINC00324 through miR-493-5p/MAPK1 in esophageal squamous cell carcinoma (ESCC) pathogenesis. Herein, we confirmed that LINC00324 is significantly upregulated in ESCC primary cells and esophageal squamous cell carcinoma cell line KYSE-70. Silencing of LINC00324 modulates cell proliferation markers, p21, p27, c-Myc, and Cyclin D1 and epithelial-to-mesenchymal transition markers, slug, snail, ZEB1, vimentin, ZO-1, and E-cadherin protein expression in ESCC. Through bioinformatics and dual luciferase reporter assays, we identified miR-493-5p as the direct target molecule of LINC00324. We further revealed that LINC00324 negatively regulates miR-493-5p expression in ESCC. Moreover, our multiple gain-and loss-of-functional experiments proved that a combination of miR-493-5p and LINC00324 significantly rescued ESCC cell proliferation and metastatic phenotypes. Mechanistically, LINC00324 promotes ESCC pathogenesis by acting as a competing endogenous RNA and sponges miR-493-5p activity thereby activating MAPK1 during ESCC progression. We believe that targeting LINC00324 /miR-493-5p/MAPK1 axis may provide new therapeutic avenues for ESCC. � 2022 Elsevier Inc.