Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, Shagun"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy
    (Elsevier B.V., 2021-10-15T00:00:00) Singh, Shagun; Singh, Tejpal; Kunja, Chaitanya; Dhoat, Navdeep S.; Dhania, Narender K.
    Muscular dystrophy is a well-known genetically heterogeneous group of rare muscle disorders. This progressive disease causes the breakdown of skeletal muscles over time and leads to grave weakness. This breakdown is caused by a diverse pattern of mutations in dystrophin and dystrophin associated protein complex. These mutations lead to the production of altered proteins in response to which, the body stimulates production of various cytokines and immune cells, particularly reactive oxygen species and NF?B. Immune cells display/exhibit a dual role by inducing muscle damage and muscle repair. Various anti-oxidants, anti-inflammatory and glucocorticoid drugs serve as potent therapeutics for muscular dystrophy. Along with the above mentioned therapeutics, induced pluripotent stem cells also serve as a novel approach paving a way for personalized treatment. These pluripotent stem cells allow regeneration of large numbers of regenerative myogenic progenitors that can be administered in muscular dystrophy patients which assist in the recovery of lost muscle fibers. In this review, we have summarized gene-editing, immunological and induced pluripotent stem cell based therapeutics for muscular dystrophy treatment. � 2021 Elsevier B.V.
  • No Thumbnail Available
    Item
    Trehalose and its Diverse Biological Potential
    (Bentham Science Publishers, 2023-06-07T00:00:00) Sharma, Eva; Shruti, P.S.; Singh, Shagun; Singh, Tashvinder; Kaur, Prabhsimran; Jodha, Bhavana; Srivastava, Yashi; Munshi, Anjana; Singh, Sandeep
    Trehalose, a disaccharide molecule of natural origin, is known for its diverse biological ap-plications, like in drug development, research application, natural scaffold, stem cell preservation, food, and various other industries. This review has discussed one such diverse molecule �trehalose aka mycose�, and its diverse biological applications with respect to therapeutics. Due to its inertness and higher stability at variable temperatures, it has been developed as a preservative to store stem cells, and later, it has been found to have anticancer properties. Trehalose has recently been associated with modulating cancer cell metabolism, diverse molecular processes, neuroprotective effect, and so on. This article describes the development of trehalose as a cryoprotectant and protein stabilizer as well as a dietary component and therapeutic agent against various diseases. The article discusses its role in diseases via modulation of autophagy, various anticancer pathways, metabolism, inflammation, aging and oxidative stress, cancer metastasis and apoptosis, thus highlighting its diverse biological potential. � 2023 Bentham Science Publishers.
  • No Thumbnail Available
    Item
    Trehalose and its Diverse Biological Potential
    (Bentham Science Publishers, 2023-06-07T00:00:00) Sharma, Eva; Shruti, P.S.; Singh, Shagun; Singh, Tashvinder; Kaur, Prabhsimran; Jodha, Bhavana; Srivastava, Yashi; Munshi, Anjana; Singh, Sandeep
    Trehalose, a disaccharide molecule of natural origin, is known for its diverse biological ap-plications, like in drug development, research application, natural scaffold, stem cell preservation, food, and various other industries. This review has discussed one such diverse molecule �trehalose aka mycose�, and its diverse biological applications with respect to therapeutics. Due to its inertness and higher stability at variable temperatures, it has been developed as a preservative to store stem cells, and later, it has been found to have anticancer properties. Trehalose has recently been associated with modulating cancer cell metabolism, diverse molecular processes, neuroprotective effect, and so on. This article describes the development of trehalose as a cryoprotectant and protein stabilizer as well as a dietary component and therapeutic agent against various diseases. The article discusses its role in diseases via modulation of autophagy, various anticancer pathways, metabolism, inflammation, aging and oxidative stress, cancer metastasis and apoptosis, thus highlighting its diverse biological potential. � 2023 Bentham Science Publishers.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify