Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Singh, Sumeet Kumar"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Betaine Intervention as a Novel Approach to Preventing Doxorubicin-Induced Cardiotoxicity
    (Elsevier Inc., 2023-09-24T00:00:00) Jaiswal, Aiswarya; Rawat, Pushkar Singh; Singh, Sumeet Kumar; Bhatti, Jasvinder Singh; Khurana, Amit; Navik, Umashanker
    The anthracycline anticancer drug doxorubicin (Dox) is widely prescribed for treating lung, ovary, breast, lymphoma, sarcoma, and pediatric cancer. Mechanistically, Dox intercalates the DNA and inhibits the topoisomerase II enzyme in fast-proliferating cancer. The clinical application of Dox is limited due to its cardiotoxicity, including congestive heart failure, alterations in myocardial structure, arrhythmia, and left ventricular dysfunction. Dox causes cardiotoxicity via various mechanisms, including oxidative stress, mitochondrial dysfunctioning, deranged Ca2+ homeostasis, inflammation, fibrosis, downregulating AMPK, etc. Betaine is a zwitterion-based drug known as N, N, N trimethylglycine that regulates the methionine cycle and homocysteine (a risk factor for cardiovascular disease) detoxification through betaine-homocysteine methyltransferases. Betaine is nontoxic and has several beneficial effects in different disease models. Betaine treatment decreases the amyloid ? generation, reduces obesity, improves steatosis and fibrosis, and activates AMP-activated protein kinase (AMPK). Further, betaine downregulates 8?hydroxy-2-deoxyguanosine, malondialdehyde, and upregulates catalases, glutathione peroxidase, and superoxide dismutase activity. Therefore, we hypothesized that betaine might be a rational drug candidate to effectively combat Dox-associated oxidative stress, inflammation, and mitochondrial dysfunction. � 2023 The Author(s)

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify