Browsing by Author "Singh, Tanya"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Genome recoding strategies to improve cellular properties: mechanisms and advances(Springer, 2020-11-19T00:00:00) Singh, Tanya; Yadav, Sudesh Kumar; Vainstein, Alexander; Kumar, VinayThe genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase�tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms. � 2020, Agricultural Information Institute, Chinese Academy of Agricultural Sciences.Item Genome recoding strategies to improve cellular properties: mechanisms and advances(Springer, 2020-11-19T00:00:00) Singh, Tanya; Yadav, Sudesh Kumar; Vainstein, Alexander; Kumar, VinayThe genetic code, once believed to be universal and immutable, is now known to contain many variations and is not quite universal. The basis for genome recoding strategy is genetic code variation that can be harnessed to improve cellular properties. Thus, genome recoding is a promising strategy for the enhancement of genome flexibility, allowing for novel functions that are not commonly documented in the organism in its natural environment. Here, the basic concept of genetic code and associated mechanisms for the generation of genetic codon variants, including biased codon usage, codon reassignment, and ambiguous decoding, are extensively discussed. Knowledge of the concept of natural genetic code expansion is also detailed. The generation of recoded organisms and associated mechanisms with basic targeting components, including aminoacyl-tRNA synthetase�tRNA pairs, elongation factor EF-Tu and ribosomes, are highlighted for a comprehensive understanding of this concept. The research associated with the generation of diverse recoded organisms is also discussed. The success of genome recoding in diverse multicellular organisms offers a platform for expanding protein chemistry at the biochemical level with non-canonical amino acids, genetically isolating the synthetic organisms from the natural ones, and fighting viruses, including SARS-CoV2, through the creation of attenuated viruses. In conclusion, genome recoding can offer diverse applications for improving cellular properties in the genome-recoded organisms. � 2020, Agricultural Information Institute, Chinese Academy of Agricultural Sciences.Item Genome recoding: a review of basic concepts, current research and future prospects of virus attenuation for controlling plant viral diseases(Springer, 2020-08-10T00:00:00) Kumar, Vinay; Singh, TanyaPlants are very susceptible to pathogens and every year, 25% of crop loss is caused by various types of pathogens including viruses. Many different strategies are being used for developing resistance against virus infection, including RNA silencing, and the genome editing including CRISPR-Cas-9 but these may produce variants/recombinants and could cause the problems for future crops. Another promising approach named as genome recoding or rewriting would be a better potential tool for controlling viral infections in plants. It relies on the concepts of replacement of synonymous codons, change in codon bias, codon pair bias and dinucleotide content. Recoding of the genome does not alter the amino acid sequences but it affects the expression level and translation efficiency. In the present report, the concept of synonymous codons, the basics of genome recoding and the possible strategies to generate genome recoded organisms are provided in details. Viral attenuation has been achieved by consideration of dinucleotide bias and codon pair bias manipulations and used in the synthesis of vaccines against various types of pathogenic bacteria and viruses. The idea of the future scope of genome recoding for developing virus-resistant plants and their challenges for the same are also comprehensively discussed. Although genome recoding is not yet tested on plants, however it could be very helpful in controlling plant viral diseases. So, it is a novel emerging area of research for developing viral resistant plants and thus would help in minimizing the agricultural losses in the near future. � 2020, Society for Plant Biochemistry and Biotechnology.Item Genome recoding: a review of basic concepts, current research and future prospects of virus attenuation for controlling plant viral diseases(Springer, 2020-08-10T00:00:00) Kumar, Vinay; Singh, TanyaPlants are very susceptible to pathogens and every year, 25% of crop loss is caused by various types of pathogens including viruses. Many different strategies are being used for developing resistance against virus infection, including RNA silencing, and the genome editing including CRISPR-Cas-9 but these may produce variants/recombinants and could cause the problems for future crops. Another promising approach named as genome recoding or rewriting would be a better potential tool for controlling viral infections in plants. It relies on the concepts of replacement of synonymous codons, change in codon bias, codon pair bias and dinucleotide content. Recoding of the genome does not alter the amino acid sequences but it affects the expression level and translation efficiency. In the present report, the concept of synonymous codons, the basics of genome recoding and the possible strategies to generate genome recoded organisms are provided in details. Viral attenuation has been achieved by consideration of dinucleotide bias and codon pair bias manipulations and used in the synthesis of vaccines against various types of pathogenic bacteria and viruses. The idea of the future scope of genome recoding for developing virus-resistant plants and their challenges for the same are also comprehensively discussed. Although genome recoding is not yet tested on plants, however it could be very helpful in controlling plant viral diseases. So, it is a novel emerging area of research for developing viral resistant plants and thus would help in minimizing the agricultural losses in the near future. � 2020, Society for Plant Biochemistry and Biotechnology.