Browsing by Author "Thakur, Neha"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Carotenoid cleavage dioxygenases (HD-CCD1A and B) contribute as strong negative regulators of ?-carotene in Indian bread wheat (cv. HD2967)(Springer Science and Business Media Deutschland GmbH, 2021-04-16T00:00:00) Thakur, Nandita; Flowerika; Thakur, Neha; Khan, Shahirina; Pandey, Ajay K.; Tiwari, SiddharthWheat (Triticum aestivum L.) is the most common cereal crop that is considered to be deficient in provitamin A carotenoids. Carotenoids are prone to degrade into apocarotenoids by the activity of carotenoid cleavage dioxygenases (CCDs). Hence, in this study, multiple CCDs were cloned from commercial Indian wheat cultivar HD2967 to understand their role in provitamin A carotenoids degradation. The homoeolog specific expression of HD-CCD1 and HD-CCD4 at different grain filling stages revealed the higher expression of transcripts arising from the A and B subgenomes of HD-CCD1. Furthermore, the grain development stages showed a strong negative correlation of HD-CCD1A (r = ? 0.969) and B (r = ? 0.970) homoeologs expression to that of ?-carotene accumulation. It suggested that they could be potentially involved in deciding the turn-over of ?-carotene in wheat grain. Three-dimensional (3D) structures for all six homoeologs of HD-CCD1 and HD-CCD4 were predicted using maize VP14 template to gain better insight into their molecular mechanism. Ramachandran plot assessment revealed that ~ 90% of residues are in the most favoured region. Docking studies with various carotenoid substrates revealed the higher affinity of HD-CCD1A and B for ?-carotene and ?-cryptoxanthin. Bacterial complementation analysis validated the functional role of all six homoeologs with HD-CCD1B showing the highest activity followed by HD-CCD1A for ?-carotene degradation. Results of this study provide valuable insights into the characteristics of HD-CCDs in wheat and thereby justifying them (HD-CCD1A and B) as the candidate genes for employing genome editing tools for developing ?-carotene enriched wheat grains. � 2021, King Abdulaziz City for Science and Technology.Item Carotenoid cleavage dioxygenases (HD-CCD1A and B) contribute as strong negative regulators of ?-carotene in Indian bread wheat (cv. HD2967)(Springer Science and Business Media Deutschland GmbH, 2021-04-16T00:00:00) Thakur, Nandita; Flowerika; Thakur, Neha; Khan, Shahirina; Pandey, Ajay K.; Tiwari, SiddharthWheat (Triticum aestivum L.) is the most common cereal crop that is considered to be deficient in provitamin A carotenoids. Carotenoids are prone to degrade into apocarotenoids by the activity of carotenoid cleavage dioxygenases (CCDs). Hence, in this study, multiple CCDs were cloned from commercial Indian wheat cultivar HD2967 to understand their role in provitamin A carotenoids degradation. The homoeolog specific expression of HD-CCD1 and HD-CCD4 at different grain filling stages revealed the higher expression of transcripts arising from the A and B subgenomes of HD-CCD1. Furthermore, the grain development stages showed a strong negative correlation of HD-CCD1A (r = ? 0.969) and B (r = ? 0.970) homoeologs expression to that of ?-carotene accumulation. It suggested that they could be potentially involved in deciding the turn-over of ?-carotene in wheat grain. Three-dimensional (3D) structures for all six homoeologs of HD-CCD1 and HD-CCD4 were predicted using maize VP14 template to gain better insight into their molecular mechanism. Ramachandran plot assessment revealed that ~ 90% of residues are in the most favoured region. Docking studies with various carotenoid substrates revealed the higher affinity of HD-CCD1A and B for ?-carotene and ?-cryptoxanthin. Bacterial complementation analysis validated the functional role of all six homoeologs with HD-CCD1B showing the highest activity followed by HD-CCD1A for ?-carotene degradation. Results of this study provide valuable insights into the characteristics of HD-CCDs in wheat and thereby justifying them (HD-CCD1A and B) as the candidate genes for employing genome editing tools for developing ?-carotene enriched wheat grains. � 2021, King Abdulaziz City for Science and Technology.Item Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali(Springer Science and Business Media B.V., 2023-09-20T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Thakur, Neha; Jangra, Alka; Tiwari, SiddharthBackground: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. Methods and results: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. Conclusion: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.Item Genome-wide identification and gene expression analysis of GHMP kinase gene family in banana cv. Rasthali(Springer Science and Business Media B.V., 2023-09-20T00:00:00) Chaturvedi, Siddhant; Khan, Shahirina; Thakur, Neha; Jangra, Alka; Tiwari, SiddharthBackground: The GHMP kinase gene family encompasses ATP-dependent kinases, significantly involved in the biosynthesis of isoprenes, amino acids, and metabolism of carbohydrates. Banana is a staple tropical crop that is globally consumed but known for high sensitivity to salt, cold, and drought stresses. The GHMP kinases are known to play a significant role during abiotic stresses in plants. The present study emphasizes the role of GHMP kinases in various abiotic stress conditions in banana. Methods and results: We identified 12 GHMP kinase (MaGHMP kinase) genes in the banana genome database and witnessed the presence of the conserved Pro-X-X-X-Gly-Leu-X-Ser-Ser-Ala domain in their protein sequences. All genes were found to be involved in ATP-binding and carried kinase activity confronting their biological roles in the isoprene (27%) and amino acid (20%) biosyntheses. The expression analysis of genes during cold, drought, and salt stress conditions in tissue culture grown banana cultivar Rasthali plants showed a significant involvement of MaGHMP kinase genes in these stress conditions. The highest expression of MaGHMP kinase3 (8.5 fold) was noted during cold stress, while MaGHMP kinase1 (25 fold and 40.01 fold) showed maximum expression during drought and salt stress conditions in leaf tissue of Rasthali. Conclusion: Our findings suggested that MaGHMP kinase1 (MaHSK) and MaGHMP kinase3 (MaGlcAK) could be considered promising candidates for thwarting the abiotic stresses in banana. � 2023, The Author(s), under exclusive licence to Springer Nature B.V.Item Overexpression of banana GDP-L-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana(Elsevier B.V., 2023-03-24T00:00:00) Chaturvedi, Siddhant; Thakur, Neha; Khan, Shahirina; Sardar, Mithilesh Kumar; Jangra, Alka; Tiwari, SiddharthL-Ascorbic acid (AsA) is a potent antioxidant and essential micronutrient for the growth and development of plants and animals. AsA is predominantly synthesized by the Smirnoff-Wheeler (SW) pathway in plants where the GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting step. In the present study, AsA was estimated in twelve banana cultivars, where Nendran carried the highest (17.2 mg/100 g) amount of AsA in ripe fruit pulp. Five GGP genes were identified from the banana genome database, and they were located at chromosome 6 (4 MaGGPs) and chromosome 10 (1 MaGGP). Based on in-silico analysis, three potential MaGGP genes were isolated from the cultivar Nendran and subsequently overexpressed in Arabidopsis thaliana. Significant enhancement in AsA (1.52 to 2.20 fold) level was noted in the leaves of all three MaGGPs overexpressing lines as compared to non-transformed control plants. Among all, MaGGP2 emerged as a potential candidate for AsA biofortification in plants. Further, the complementation assay of Arabidopsis thaliana vtc-5-1 and vtc-5-2 mutants with MaGGP genes overcome the AsA deficiency that showed improved plant growth as compared to non-transformed control plants. This study lends strong affirmation towards development of AsA biofortified plants, particularly the staples that sustain the personages in developing countries. � 2023 Elsevier B.V.Item Overexpression of banana GDP-L-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana(Elsevier B.V., 2023-03-24T00:00:00) Chaturvedi, Siddhant; Thakur, Neha; Khan, Shahirina; Sardar, Mithilesh Kumar; Jangra, Alka; Tiwari, SiddharthL-Ascorbic acid (AsA) is a potent antioxidant and essential micronutrient for the growth and development of plants and animals. AsA is predominantly synthesized by the Smirnoff-Wheeler (SW) pathway in plants where the GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting step. In the present study, AsA was estimated in twelve banana cultivars, where Nendran carried the highest (17.2 mg/100 g) amount of AsA in ripe fruit pulp. Five GGP genes were identified from the banana genome database, and they were located at chromosome 6 (4 MaGGPs) and chromosome 10 (1 MaGGP). Based on in-silico analysis, three potential MaGGP genes were isolated from the cultivar Nendran and subsequently overexpressed in Arabidopsis thaliana. Significant enhancement in AsA (1.52 to 2.20 fold) level was noted in the leaves of all three MaGGPs overexpressing lines as compared to non-transformed control plants. Among all, MaGGP2 emerged as a potential candidate for AsA biofortification in plants. Further, the complementation assay of Arabidopsis thaliana vtc-5-1 and vtc-5-2 mutants with MaGGP genes overcome the AsA deficiency that showed improved plant growth as compared to non-transformed control plants. This study lends strong affirmation towards development of AsA biofortified plants, particularly the staples that sustain the personages in developing countries. � 2023 Elsevier B.V.