Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "U, Basavaraju"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    A novel CaO nanocomposite cross linked graphene oxide for Cr(VI) removal and sensing from wastewater
    (Elsevier Ltd, 2022-04-27T00:00:00) Singh, Simranjeet; Naik, T.S. Sunil Kumar; Anil, Amith G.; Khasnabis, Sutripto; Nath, Bidisha; U, Basavaraju; Kumar, Vineet; Garg, V.K.; Subramanian, S.; Singh, Joginder; Ramamurthy, Praveen C.
    A novel green nanocomposite has been prepared by immobilizing CaO nanoparticles (CaO NPs) on the surface of graphene oxide. Biogenic CaO-NPs were synthesized from Lala clamshells. Morphological and structural characterizations of the nanocomposite were studied extensively. The adsorption capacity (qmax) of the nanocomposite for removing Cr(VI) was 38.04 mg g?1. In addition to this, the adsorption data were adequately simulated with Langmuir, Freundlich, Temkin, and pseudo-second-order models, suggesting that the adsorption process was the combination of external mass transfer and chemisorption. Electrostatic interaction was the dominant mechanism for Cr(VI) removal. In addition, the synthesized nanocomposites also serve as an excellent sensor for Cr(VI) sensing, with a limit of detection (LOD) of 0.02 ?M utilizing electrochemical methods. Therefore, this green nanocomposite can simultaneously serve as an adsorbent and sensor for Cr(VI)removal from aqueous solutions. � 2022 Elsevier Ltd

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify