Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Umair, Muhammad"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Item
    Predominated capacitive behavior of Ag-doped magnesium vanadate as a novel electrode material for supercapacitors
    (Elsevier Ltd, 2023-06-11T00:00:00) Umair, Muhammad; Shad, Naveed Akhtar; Hussain, S.; Jilani, Asim; Sajid, Muhammad Munir; Arshad, Muhammad Imran; Hasnain Rana, Hafiz Talha; Sharma, Surender Kumar; Mishra, Yogendra Kumar; Javed, Yasir
    Transition metal vanadate nanostructures are getting significant importance as an efficient electrode material for modern energy storage applications. In this work, a simple hydrothermal method is employed for the synthesis of magnesium vanadate (MgV2O5) and Ag-doped magnesium vanadate (Ag doped MgV3O8) nanomaterials. The X-ray diffraction (XRD) analysis reveals the formation of an orthorhombic structure for magnesium vanadate, whereas the Ag-doped magnesium vanadate results in a monoclinic structure. Interestingly, the optical bandgap is observed to increase from 2.85 eV to 3.92 eV with the increase in Ag-doping as revealed from Tauc's plot of the UV-visible absorption spectrum. The electrochemical performance of magnesium vanadate electrodes is thoroughly investigated by cyclic voltammetry (CV), Galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy. The Ag-doped magnesium vanadate shows higher specific capacitance (Cs = 706 Fg?1) in comparison to undoped (325 Fg?1) at a current density J = 5 Ag?1. The theoretical investigations through Dunn's model demonstrate a major contribution arises from surface-controlled processes, which increase as high as 91% at scan rate of 60 mVsec?1. Our findings indicate that Ag-doping significantly improves the overall electrochemical response of magnesium vanadate as an efficient electrode material for supercapacitor applications. � 2023 Hydrogen Energy Publications LLC

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify