Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Verma, A"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram
    (Nature Research, 2020) Bhambri, R; Watson, C.S; Hewitt, K; Haritashya, U.K; Kargel, J.S; Pratap, Shahi A; Chand, P; Kumar, A; Verma, A; Govil, H.
    In 2017-2019 a surge of Shispare Glacier, a former tributary of the once larger Hasanabad Glacier (Hunza region), dammed the proglacial river of Muchuhar Glacier, which formed an ice-dammed lake and generated a small Glacial Lake Outburst Flood (GLOF). Surge movement produced the highest recorded Karakoram glacier surface flow rate using feature tracking (~18 ± 0.5 m d−1) and resulted in a glacier frontal advance of 1495 ± 47 m. The surge speed was less than reports of earlier Hasanabad advances during 1892/93 (9.3 km) and 1903 (9.7 km). Surges also occurred in 1973 and 2000-2001. Recent surges and lake evolution are examined using feature tracking in satellite images (1990-2019), DEM differencing (1973-2019), and thermal satellite data (2000-2019). The recent active phase of Shispare surge began in April 2018, showed two surface flow maxima in June 2018 and May 2019, and terminated following a GLOF on 22-23 June 2019. The surge likely had hydrological controls influenced in winter by compromised subglacial flow and low meltwater production. It terminated during summer probably because increased meltwater restored efficient channelized flow. We also identify considerable heterogeneity of movement, including spring/summer accelerations. 2020, The Author(s).

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify