Browsing by Author "Verma, Malkhey"
Now showing 1 - 13 of 13
Results Per Page
Sort Options
Item Aldose Reductase: a cause and a potential target for the treatment of diabetic complications(Pharmaceutical Society of Korea, 2021-07-19T00:00:00) Thakur, Sapna; Gupta, Sonu Kumar; Ali, Villayat; Singh, Priyanka; Verma, MalkheyDiabetes mellitus, a disorder of metabolism, results in the elevation of glucose level in the blood. In this hyperglycaemic condition, aldose reductase overexpresses and leads to further complications of diabetes through the polyol pathway. Glucose metabolism-related disorders are the accumulation of sorbitol, overproduction of NADH and fructose, reduction in NAD+, and excessive NADPH usage, leading to diabetic pathogenesis and its complications such as�retinopathy, neuropathy, and nephropathy. Accumulation of sorbitol results in the alteration of osmotic pressure and leads to osmotic stress. The overproduction of NADH causes an increase in reactive oxygen species production which leads to oxidative stress. The overproduction of fructose causes cell death and non-alcoholic fatty liver disease. Apart from these disorders, many other complications have also been discussed in the literature. Therefore, the article overviews the aldose reductase as the causative agent and a potential target for the treatment of diabetic complications. So, aldose reductase inhibitors have gained much importance worldwide right now. Several inhibitors, like derivatives of carboxylic acid, spirohydantoin, phenolic derivatives, etc. could prevent diabetic complications are discussed in this article. � 2021, The Pharmaceutical Society of Korea.Item Alterations in cellular metabolisms after Imatinib therapy: a review(Springer, 2022-05-16T00:00:00) Kumar, Veerandra; Singh, Priyanka; Gupta, Sonu Kumar; Ali, Villayat; Jyotirmayee; Verma, MalkheyChronic myeloid leukemia (CML) is characterized by the possession of the Philadelphia chromosome, which contains the Bcr-Abl oncogene that codes for the oncoprotein BCR-ABL. Through glucose metabolism, glycolysis, and the translocation of the high-affinity glucose transporter to the cell surface, BCR-ABL modulates various signaling pathways in CML cells and maintains ATP turnover in tumor cells. Given the effective results of anti-tumor drugs in normalizing abnormal cellular metabolism, Imatinib (IM) has begun to be investigated and proven to be a highly potent tyrosine kinase inhibitor (TKI) in CML therapy. Initially, IM was tested for aberrant glucose metabolism, but all four metabolisms (glucose, lipid, amino acid, and nucleotide) are interrelated and enhance tumor growth under stress; eventually, the other three metabolisms were investigated. Subsequent effects of IM therapy showed a switch from glycolysis to the tricarboxylic acid cycle, upregulation of pentose phosphate pathway-associated oxidative pathways, and internal translocation of glucose transporters. In terms of lipid metabolism, IM had contradictory results: in one study, it served as a triglyceride and total cholesterol regulator, while in another study, it had no impact. The effect of IM on altered amino acid and nucleotide metabolisms was investigated using a multi-omics approach, which revealed a decrease in sulfur-containing amino acids, aromatic amino acids, and nucleotide biosynthesis. So, despite the mixed effect on cellular metabolism, IM has more positive effects, and therefore, the drug proved to be better than other TKIs. The present study is one approach to determine the transformative activities of IM against CML-associated metabolic changes, but further investigation is still needed to uncover more potentials of IM. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Analysis of the Inhibitory Effect of hsa-miR-145-5p and hsa-miR-203a-5p on Imatinib-Resistant K562 Cells by GC/MS Metabolomics Method(American Chemical Society, 2023-09-14T00:00:00) Singh, Priyanka; Yadav, Radheshyam; Verma, Malkhey; Chhabra, RavindreshImatinib (IM) resistance is considered to be a significant challenge in the management of chronic myeloid leukemia (CML). Previous studies have reported that hsa-miR-145-5p and hsa-miR-203a-5p can overcome IM resistance and hsa-miR-203a-5p can alter glutathione metabolism in IM-resistant cells. The purpose of this study was to examine whether hsa-miR-145-5p or hsa-miR-203a-5p counters IM resistance by targeting the overall metabolic profile of IM-resistant K562 cells. The metablic profiling of cell lysates obtained from IM-sensitive, IM-resistant, and miR-transfected IM-resistant K562 cells was carried out using the GC-MS technique. Overall, 75 major metabolites were detected, of which 32 were present in all samples. The pathway analysis of MetaboAnalyst 5.0 revealed that the majorly enriched pathways included glucose metabolism, fatty acid biosynthesis, lipogenesis, and nucleotide metabolism. Eleven of identified metabolites, l-glutamine, l-glutamic acid, l-lactic acid, phosphoric acid, 9,12-octadecadienoic acid, 9-octadecenoic acid, myristic acid, palmitic acid, cholesterol, and ?-alanine, appeared in enriched pathways. IM-resistant cells had comparatively higher concentrations of all of these metabolites. Notably, the introduction of hsa-miR-145-5p or hsa-miR-203a-5p into resistant cells resulted in a decrease in levels of these metabolites. The efficacy of miR-203a-5p was particularly remarkable in comparison with miR-145-5p, as evidenced by partial least-squares-discriminant analysis (PLS-DA), which showed a high level of similarity in metabolic profile between IM-sensitive K562 cells and IM-resistant cells transfected with hsa-miR-203a-5p. The results indicate that GC-MS-based metabolic profiling has the potential to distinguish between drug-resistant and -sensitive cells. This approach can also be used to routinely monitor therapeutic response in drug-resistant patients, thus, enabling personalized therapy. � 2023 American Society for Mass Spectrometry. Published by American Chemical Society. All rights reserved.Item Antileukemic Activity of hsa-miR-203a-5p by Limiting Glutathione Metabolism in Imatinib-Resistant K562 Cells(MDPI, 2022-12-19T00:00:00) Singh, Priyanka; Yadav, Radheshyam; Verma, Malkhey; Chhabra, RavindreshImatinib has been the first and most successful tyrosine kinase inhibitor (TKI) for chronic myeloid leukemia (CML), but many patients develop resistance to it after a satisfactory response. Glutathione (GSH) metabolism is thought to be one of the factors causing the emergence of imatinib resistance. Since hsa-miR-203a-5p was found to downregulate Bcr-Abl1 oncogene and also a link between this oncogene and GSH metabolism is reported, the present study aimed to investigate whether hsa-miR-203a-5p could overcome imatinib resistance by targeting GSH metabolism in imatinib-resistant CML cells. After the development of imatinib-resistant K562 (IR-K562) cells by gradually exposing K562 (C) cells to increasing doses of imatinib, resistant cells were transfected with hsa-miR-203a-5p (R+203). Thereafter, cell lysates from various K562 cell sets (imatinib-sensitive, imatinib-resistant, and miR-transfected imatinib-resistant K562 cells) were used for GC-MS-based metabolic profiling. L-alanine, 5-oxoproline (also known as pyroglutamic acid), L-glutamic acid, glycine, and phosphoric acid (Pi)�five metabolites from our data, matched with the enumerated 28 metabolites of the MetaboAnalyst 5.0 for the GSH metabolism. All of these metabolites were present in higher concentrations in IR-K562 cells, but intriguingly, they were all reduced in R+203 and equated to imatinib-sensitive K562 cells (C). Concludingly, the identified metabolites associated with GSH metabolism could be used as diagnostic markers. � 2022 by the authors.Item Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review(Springer, 2021-01-16T00:00:00) Singh, Priyanka; Kumar, Veerandra; Gupta, Sonu Kumar; Kumari, Gudia; Verma, MalkheyChronic myeloid leukemia (CML), a myeloproliferative hematopoietic cancer, is caused by a genetic translocation between chromosomes 9 and 22. This translocation produces a small Philadelphia chromosome, which contains the Bcr-Abl oncogene. The Bcr-Abl oncogene encodes the BCR-ABL protein, upregulates various signaling pathways (JAK-STAT, MAPK/ERK, and PI3K/Akt/mTOR), and out of which the specifically highly active pathway is the PI3K/Akt/mTOR pathway. Among early treatments for CML, tyrosine kinase inhibitors (TKIs) were found to be the most effective, but drug resistance against kinase inhibitors led to the discovery of novel alternative therapies. At this point, the PI3K/Akt/mTOR pathway components became new targets due to stimulation of this pathway in TKIs-resistant CML patients. The current review article deals with reviewing the scientific literature on the PI3K/Akt/mTOR pathway inhibitors listed in the National Cancer Institute (NCI) drug dictionary and proved effective against multiple cancers. And out of those enlisted inhibitors, the US FDA has also approved some PI3K inhibitors (Idelalisib, Copanlisib, and Duvelisib) and mTOR inhibitors (Everolimus, Sirolimus, and Temsirolimus) for cancer therapy. So far, several inhibitors have been tested, and further investigations are still ongoing. Even in Imatinib, Nilotinib, and Ponatinib-resistant CML cells, a dual PI3K/mTOR inhibitor, BEZ235, showed antiproliferative activity. Therefore, by considering the literature data of these reviews and further examining some of the reported inhibitors, which proved effective against the PI3K/Akt/mTOR signaling pathway in multiple cancers, may improve the therapeutic approaches towards TKI-resistant CML cells where the respective signaling pathway gets upregulated. � 2021, Springer Science+Business Media, LLC, part of Springer Nature.Item Downregulation of Bcr-Abl oncogene in Chronic Myeloid Leukemia (CML) by microRNAs in case of Imatinib resistance(ASIAN PACIFIC JOURNAL OF HEALTH SCIENCES, 2018) Singh, Priyanka; Gupta, Sonu Kumar; Ali, Vilayat; Verma, MalkheyThe well-known myeloproliferative malignancy, chronic myeloid leukemia (CML), causes due to the formation of short and modified Philadelphia chromosome having the Bcr-Abl oncogene. Many therapeutic approaches have been made for the treatment of CML, the best one was the development of Tyrosine Kinase Inhibitors (TKIs), mainly Imatinib. But after the development of mutation against Imatinib, researchers moved towards RNA interference (RNAi) of BCR-ABL mRNA via microRNAs. In this review, we identified 105 miRNAs by Target Scan, miRbase and miRNAMap, which target the proteins of CML signaling pathway. These are selected on the basis of their constitutive activation in the Bcr-Abl positive cell lines. Targeting these proteins by miRNAs might effectively enhance chemotherapy-induced cytotoxicity in CML cells. Out of these 105 miRNAs, 21 were found to commonly effective against those proteins. These 21 microRNAs may or may not have been studied in CML cases, but have been studied in other solid or myeloid tumors. This review might be helpful in extending the studies regarding regulation of CML signaling proteins by miRNAs.Item Expression, Purification and Kinetic Characterization of Lactate Dehydrogenase of Lactic Acid Bacteria and ProB of Bacillus subtilis(Central University of Punjab, 2018) Gunjan; Verma, MalkheyLactate dehydrogenase is very well known for its role in glucose metabolism in Lactic Acid Bacteria (LAB). These bacteria are widely used in the industrial and research areas. LAB use NADH as a cofactor to produce lactate or lactic acid from glucose through fermentation, whereas ProB is an enzymatic protein which catalyzes the conversion of L-glutamate to ?-glutamyl phosphate at the expense of ATP in proline biosynthesis. Both the recombinant proteins are expressed in the E. coli BL 21 strain using pET plasmids. Proteins are purified using affinity chromatography and purity is established by a single band in SDS Page. Proteins were quantified by Bradford assay. In this study, the proteins selected are Lactate Dehydrogenase and ProB. In the absence of FBP, Pi is an activator of L. lactis LDH at pH 6. This effect can be interpreted by considering the computed binding affinities of Pi to the catalytic and allosteric binding sites of the enzymes modelled in protonation states corresponding to pH 6 and pH 7. In this study, we can find out the delicate interplay among the effects of Pi, FBP, and pH that results in different regulatory effects on the LDH of LAB and ProB of B. subtilis.Item Maps for when the living gets tough : Maneuvering through a hostile energy landscape(Elsevier, 2016) Amondeel, Thierry D.G.; Rehman, Samrina; Zhang, Yanfei; Verma, Malkhey; Durre, Peter; Rehman, Matteo ina; Zhang, Yanfei; Verma, MalkheyWith genome sequencing of thousands of organisms, a scaffold has become available for data integration: molecular information can now be organized by attaching it to the genes and their gene-expression products. It is however, the genome that is selfish not the gene, making it necessary to organize the information into maps that enable functional interpretation of the fitness of the genome. Using flux balance analysis one can calculate the theoretical capabilities of the living organism. Here we examine whether according to this genome organized information, organisms such as the ones present when life on Earth began, are able to assimilate the Gibbs energy and carbon that life needs for its reproduction and maintenance, from a relatively poor Gibbs-energy environment. We shall address how Clostridium ljungdahlii may use at least two special features and one special pathway to this end: gear-shifting, electron bifurcation and the Wood-Ljungdahl pathway. Additionally, we examined whether the C. ljungdahlii map can also help solve the problem of waste management. We find that there is a definite effect of the choices of redox equivalents in the Wood-Ljungdahl pathway and the hydrogenase on the yield of interesting products like hydroxybutyrate. We provide a drawing of a subset of the metabolic network that may be utilized to project flux distributions onto by the community in future works. Furthermore, we make all the code leading to the results discussed here publicly available for the benefit of future work.Item Metabolic flux analysis in plant metabolic network(2018) Ali, Villayat; Singh, Priyanka; Gupta, Sonu; Vijaykumar; Mauley, Yogesh; Verma, MalkheyItem miR-145-5p and miR-203a-5p overcome imatinib resistance in myelogenous leukemic cells through metabolic reprogramming(National Institute of Science Communication and Policy Research, 2023-03-01T00:00:00) Singh, Priyanka; Gupta, Sonu Kumar; Ali, Villayat; Chhabra, Ravindresh; Verma, MalkheyImatinib is the most effective therapy for chronic myeloid leukemia (CML), but many patients eventually develop resistance to it after an initial satisfactory response. This study investigated the potential of three miRNAs (miR-106b-5p, miR-145-5p, miR-203a-5p) in overcoming imatinib resistance in leukemic cells. The imatinib-resistant K562 (IR-K562) cells were developed and transfected with one of the three miRNAs to evaluate their potency in overcoming imatinib resistance. The changes in the metabolic profile were studied using flux balance analysis (FBA) and the data was validated using qRT-PCR.Among the three miRNAs, the ectopic expression of either miR-145-5p or miR-203a-5p was able to sensitize the IR-K562 cells to imatinib. The concentration of key oncometabolites; glucose, lactate, and glutamine, in the culture media of the miR-transfected IR-K562 cells, reverted to the same levels as seen in imatinib-sensitive K562 cells. In addition, the FBA analysis revealed that the metabolism of lipid, fatty acids, and electron transport chain were significantly altered in resistant cells. The FBA data was also validated at the molecular level. Interestingly, the imatinib treatment coupled with the transfection of miR-145-5p or miR-203a-5p cells could reverse the metabolic flux of IR-K562 to the levels seen in imatinib-sensitive K562 cells. This study highlights the key metabolic changes that occur during development of imatinib resistance. It also identifies the specific miRNAs which can be targeted to overcome imatinib resistance in CML. � 2023, National Institute of Science Communication and Policy Research. All rights reserved.Item Novel pharmacological approach for the prevention of multidrug resistance (MDR) in a human leukemia cell line(Elsevier Ltd, 2021-06-11T00:00:00) Gupta, Sonu Kumar; Singh, Priyanka; Chhabra, Ravindresh; Verma, MalkheyBackground: Drug resistance mechanisms are the regulatory factors associated with drug metabolism and drug transport to inward and outward of the target cells. Maybridge fragment (MBF) library is a collection of pharmacophore rich compounds having affinity with membrane transporters. This study has been designed to evaluate the efficacy of MBFs in overcoming the leukemic cells� resistance to imatinib. Methods: Imatinib resistant cells (K562-R) were prepared using myelogenous leukemia cell line (K562) by titration method. The four MBFs were prioritized for determining their effect on imatinib resistance. The cells were treated with imatinib and MBFs and the MTT assay was performed to evaluate the efficacy of MBFs in enhancing the imatinib mediated cell death. The transcript levels of Bcr-Abl1 gene and efflux transporter genes were determined by RT-qPCR analysis. Results: The MBFs enhanced the imatinib mediated cell death of K562-R cells. There was also a significant decrease in the mRNA levels of the major drug efflux genes (ABCB1, ABCB10, ABCC1 and ABCG2) when treated with a combination of imatinib and MBF in comparison to imatinib treatment alone. Conclusion: The drug efflux is one of the mechanisms of multidrug resistance in cancer cells and the MBFs used in this study were all found to significantly overcome the imatinib resistance by limiting the expression of efflux genes. This study, therefore, highlights the potential of Maybridge compounds in treating the drug resistant leukemia. � 2021 Elsevier LtdItem Production and Optimization of Lovastatin by Microbial Fermentation using Aspergillus terreus(Central University of Punjab, 2018) Raj, Rohit; Verma, MalkheyIn the recent times, the fungus Aspergillus (A.) terreus has been highly popularized regarding its domination for the production of the "crackerjack" drugs known as statins, particularly lovastatin. The aim of this research was the production of lovastatin which is a known cholesterol-lowering drug, through microbial fermentation using A. terreus. Besides, it also aimed to analyze certain bioactive chemical products and evaluation of such antibacterial and antifungal products, if any produced. Bioactives (chemical compounds often referred as secondary metabolites) were analyzed using the Gas Chromatography-Mass Spectroscopy technique (GC-MS) technique. A. terreus is known to produce a vast variety of important secondary metabolites with high biological activities. The extraction of the natural statins such as lovastatin or mevastatin from A. terreus is seen as one of the major breakthrough in the field of Industrial Microbiology/Fermentation Technology. Here we report the Aspergillus terreus NBRC (IFO) 31217 (Strain I) and ATCC 11877 (Strain II) don't produce lovastatin but they produce important bioactive compounds of high commercial value like Isovaline (C5H11NO2) and Silane etc.Item Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: a review(Springer, 2022-02-07T00:00:00) Kumar, Veerandra; Singh, Priyanka; Gupta, Sonu Kumar; Ali, Villayat; Verma, MalkheyImatinib, nilotinib, dasatinib, bosutinib, ponatinib, and asciminib are FDA-approved tyrosine kinase inhibitors (TKIs) for chronic myeloid leukemia (CML), each of which has a specific pharmacological profile. Asciminib has been recently (2021) approved for patients resistant to former TKIs, and because the binding site of this drug (the myristoyl pocket in the ABL1 kinase) is different from that of other TKIs (ATP-binding sites), it is, therefore, effective against T315I mutation of BCR-ABL oncoprotein. All TKIs have a different pharmacological profile due to different chemical structures. Imatinib is the only TKI whose absorption depends on both influx (OCT1 and OATP1A2) and efflux (ABCB1 and ABCG2) transporters, whereas the others rely only on efflux transporters. The efflux of dasatinib is also regulated by ABCC4 and ABCC6 transporters. Nilotinib and ponatinib are transported passively, as no role of transporters has been found in their case. A phenomenon common to all in the metabolic aspect is that the CYP3A4 isoform of CYP450 primarily metabolizes TKIs. Not only does CYP3A4, flavin-containing monooxygenase 3 (FMO3), and uridine 5'-diphospho-glucuronosyltransferase (UGT) also metabolize dasatinib, and similarly, by glucuronidation process, asciminib gets metabolized by UGT enzymes (UGT1A3, UGT1A4, UGT2B7, and UGT2B17). Additionally, the side effects of TKIs are categorized as hematological (thrombocytopenia, neutropenia, anemia, and cardiac dysfunction) and non-hematological (diarrhea, nausea, vomiting, pleural effusion, and skin rash). However, few toxicities are drug-specific, like degradation of biomolecules by ponatinib-glutathione (P-GSH) conjugates and clinical pancreatitis (dose-limited toxicity and manageable by dosage alterations) are related to ponatinib and asciminib, respectively. This review focuses on the pharmacokinetics of approved TKIs related to CML therapy to comprehend their specificity, tolerability, and off-target effects, which could help clinicians to make a patient-specific selection of CML drugs by considering concomitant diseases and risk factors to the patients. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.