Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Witham, A.A."

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    Item
    Enhancing Bulge Stabilization through Linear Extension of C8-Aryl-Guanine Adducts to Promote Polymerase Blockage or Strand Realignment to Produce a C:C Mismatch
    (American Chemical Society, 2015) Sproviero, M.; Verwey, A.M.R.; Witham, A.A.; Manderville, R.A.; Sharma, P.; Wetmore, S.D.
    Aryl radicals can react at the C8-site of 2?-deoxyguanosine (dG) to produce DNA adducts with a C8-C linkage (denoted C-linked). Such adducts are structurally distinct from those possessing a flexible amine (N-linked) or ether (O-linked) linkage, which separates the C8-aryl moiety from the guanine nucleobase. In the current study, two model C-linked C8-dG adducts, namely, C8-benzo[b]thienyl-dG ([BTh]G) and C8-(pyren-1-yl)-dG ([Py]G), were incorporated into the NarI (12mer, NarI(12) and 22mer, NarI(22)) hotspot sequence for frameshift mutations in bacteria. For the first time, C-linked C8-dG adducts are shown to stabilize the -2 deletion duplex within the NarI sequence. Primer-elongation assays employing Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) demonstrates the influence of C8-aryl ring size and shape in promoting Dpo4 blockage or strand realignment to produce a C:C mismatch downstream of the adduct site. Molecular dynamics simulations of the -2 deletion duplex suggest that both anti and syn adduct structures are energetically accessible. These findings provide a rationale for describing the biochemical outcome induced by C-linked C8-dG adducts when processed by Dpo4. (Figure Presented) ? 2015 American Chemical Society.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify