Browsing by Author "Yadav, Manisha"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Determinants for macromolecular crowding-induced thermodynamic stabilization of acid-denatured cytochrome c to molten globules(Elsevier B.V., 2023-07-22T00:00:00) Kumari, Beeta; Shabnam; Yadav, Manisha; Kumar, Manoj; Kushwaha, Pratibha; Prakash Prabhu, N.; Kumar, RajeshThe macromolecular crowding effect transforms the acid-denatured ferricytochrome c (cyt cIII) (UA-state) to molten-globule (MGMC-state) at pH 1.85. Crowding-induced stabilization free energy (??G) and preferential hydration ??W were estimated for the UA ? MGMC transition. The magnitudes of ??G and ??W were found to be decreased as dextran 70 (D70) > dextran 40 (D40) > ficoll 70 (F70), which demonstrates that ??G and ??W track the molecular size and shape of the crowder towards refolding and stabilization of UA-state to MGMC-state. Analysis of effects of crowders (D40, D70, F70) on thermal and chemical-denaturations of acid-denatured cyt cIII provided several important information, (i) macromolecular crowding increased the thermodynamic stability of acid-denatured cyt cIII, (ii) concentration, size and shape of crowder control the crowding-induced thermodynamic stabilization of MGMC-state, (iii) crowding effect increased the thermal-denaturation midpoint (Tm) with a slight change in enthalpy (?Hm), suggesting that the steric-excluded volume effect contributes to the crowding-induced increased thermal stability of the acid-denatured protein. Analysis of entropy ? enthalpy plots for D40, D70, and F70 reveals that in addition to the steric-excluded volume effect, the enthalpic contribution is also added to the macromolecular crowding-induced stabilization of acid-denatured cyt cIII. The dilute-medium, compound-crowder, purely entropic-crowder and purely enthalpic-crowder curves were obtained for acid-denatured cyt cIII for D70, D40 and F70. The crossover temperature, Tx was calculated from the dilute and compound-crowder curves. The Tx values measured for D40, D70, and F70 were found to be ? 250.15 K, 272.15 K, and 275.15 K, respectively, which suggests that the Tx value depends on the size and shape of the crowder. Furthermore, the observation of a lower value of Tx and a minor enthalpic component for D40, D70, and F70 is likely due to the formation of weaker soft interactions of acid-denatured cyt cIII with D40, D70, and F70. � 2023 Elsevier B.V.Item Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress(Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, SanjeevIn wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SASItem Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress(Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, SanjeevIn wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SASItem Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain(Elsevier B.V., 2023-09-16T00:00:00) Bajaj, Manish; Muddassir, Mohd; Choi, Bumjoon; Singh, Priyanka; Park, Jong Bum; Singh, Surjeet; Yadav, Manisha; Kumar, Rajesh; Eom, Kilho; Sharma, DeepakThe small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications. � 2023 Elsevier B.V.