Browsing by Author "Yadav, S.K"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item The CRISPR–Cas9, genome editing approach: a promising tool for drafting defense strategy against begomoviruses including cotton leaf curl viruses(Springer, 2019) Uniyal, A.P; Yadav, S.K; Kumar, VinayThe CRISPR–Cas9 is emerging genome editing tool and very easy and straightforward in operation that has been tested and explored for introduction of new traits in plant systems. Recently, a number of reports have documented utilization of this technology for providing tolerance against viral diseases mediated by begomoviruses. Begomoviruses infect dicot and are transmitted by white flies and cause devastating losses to yield of important agricultural crops including tomato, cassava and cotton. An overview of genomic structure of begomoviruses has been presented to understand the potential strategy for designing of effective sgRNAs to combat the viral replication for generating resistance against infection. This review provides the introduction, recent developments, and applications of the CRISPR–Cas9 system in plants and proposes a holistic methodology for generating cotton plant an example having resistance against begomoviruses. The genome editing using CRISPR–Cas9 system against complex of begomoviruses collectively termed as cotton leaf curl virus, which a major contributor to reduction of the cotton yield especially in Northern India and Pakistan is also discussed thoroughly. In conclusion, this potential strategy could be a sustainable approach for development of tolerant crops against diseases mediated by DNA viruses. © 2019, Society for Plant Biochemistry and Biotechnology.Item An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants(Springer, 2019) Uniyal, A.P; Mansotra, K; Yadav, S.K; Kumar, VinayA large number of computational tools have been documented in recent years for identification of target-specific valid single-guide (sg) RNAs (18–20 nucleotide long sequence) that is an important component for the efficient utilization of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats—CRISPR-associated Protein) system. Despite optimization of Cas9, other major concerns are on-target efficiency and off-target activity that depend upon the sequence(s) of target-specific sgRNA(s). However, a very little attention has been paid for identification of the best-hit sgRNA for precise targeting as well as minimizing the off-target effects. The aim of this present work is to offer comparative insight into existing CRISPR software tools with their unique features (including targeted genome) and utilities. These available web tools were found to be designed based upon only a few limited mathematical models. Among all these available web tools, three (Benchling, Desktop and CRISPR-P) have been curated as exclusively available for plant genome-editing purpose. These three software tools have been comprehensively described and analyzed with single same target enquiry from two randomly selected genes (IDM2 and IDM3 from Arabidopsis thaliana). Interestingly, all these selected tools generated different results (sgRNAs) even for the same query. In fact, the sequence of sgRNA is considered an important parameter to determine the efficiency and specificity of sgRNAs for precise genome editing. Thus, there is an urgent requirement to pay attention for a validated sgRNA-designing tool for precise DNA editing in plants. In conclusion, this work will encourage building up a consensus for developing a universal valid sgRNA designing for different organisms including plants. © 2019, King Abdulaziz City for Science and Technology.