Browsing by Author "Yadav U.P."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Caulerpa taxifolia inhibits cell proliferation and induces oxidative stress in breast cancer cells(De Gruyter, 2019) Mehra R.; Bhushan S.; Yadav U.P.; Bast F.; Singh S.Caulerpa taxifolia (M. Vahl) C. Agardh or killer alga is known to possess several bioactive secondary metabolites with unique structural modifications. We investigated anti-oxidant and anti-proliferative activity of C. taxifolia extract (CTE) on breast and lung cancer cells, along with possible effects on mitochondrial membrane potential (MMP) and cell cycle progression. The results revealed up to 6-folds increase in reactive oxygen species (ROS), 2-folds increase in glutathione reductase (GR) activity, 1.7-fold increase in superoxide dismutase (SOD) activity and 1.8-fold change in catalase activity w.r.t. untreated cells i.e. 10.72 to 21.44 nmol/min/mL, 2.0 to 3.49 U/mL and 37.51 to 69.26 U/min/g FW, respectively, in MDA-MB-cells. Likewise, selective anti-proliferative activity with IC50 0.19 + 0.1, 0.27 + 0.1, and 0.43 + 0.1 μg/μL, was recorded in MDA-MB-231, T-47D, and H1299 cells. In addition, dose-dependent increase in MMP of up to 40% and G1/S phase mitotic arrest was documented by CTE treatment in MDA-MB-231 cells. The results suggest an anti-proliferative and oxidative stress inducing activity of CTE. Changes in MMP and cell cycle arrest further support the anti-cancer effects of CTE. It is believed that C. taxifolia may be considered as a potent source of anti-cancer drugs, subject to further validations.Item E-pharmacophore guided discovery of pyrazolo[1,5-c]quinazolines as dual inhibitors of topoisomerase-I and histone deacetylase(Academic Press Inc., 2020) Joshi G.; Kalra S.; Yadav U.P.; Sharma P.; Singh P.K.; Amrutkar S.; Ansari A.J.; Kumar S.; Sharon A.; Sharma S.; Sawant D.M.; Banerjee U.C.; Singh S.; Kumar R.In the quest to ameliorate the camptothecin (CPT) downsides, we expedite to search for stable non-CPT analogues among 11 motifs of pyrazoloquinazolines reported. E-pharmacophore drug design approach helped filtering out pyrazolo[1,5-c]quinazolines as Topoisomerase I (TopoI) 'interfacial' inhibitors. Three compounds, 3c, 3e, and 3l were shown to be potent non-intercalating inhibitors of TopoI specifically and showed cancer cell-specific cytotoxicity in lung, breast and colon cancer cell lines. The compounds induced cell cycle arrest at S-phase, mitochondrial cell death pathway and modulated oxidative stress in cancer cells. Furthermore, a preliminary study was conducted to explore the feasibility of these compounds to be developed as dual TopoI-HDAC1 (histone deacetylase 1) inhibitors (4a) to combat resistance. Compound 4a was found to possess dual inhibitory capabilities in-vitro. Cytotoxic potential of 4a was found to be significantly higher than parent compound in 2D as well as 3D cancer cell models. Probable binding modes of 4a with TopoI and HDAC1 active sites were examined by molecular modelling.