Browsing by Author "Yerer, Mukerrem Betul"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Luteolin, a Potent Anticancer Compound: From Chemistry to Cellular Interactions and Synergetic Perspectives(MDPI, 2022-11-01T00:00:00) Singh Tuli, Hardeep; Rath, Prangya; Chauhan, Abhishek; Sak, Katrin; Aggarwal, Diwakar; Choudhary, Renuka; Sharma, Ujjawal; Vashishth, Kanupriya; Sharma, Sheetu; Kumar, Manoj; Yadav, Vikas; Singh, Tejveer; Yerer, Mukerrem Betul; Haque, ShafiulIncreasing rates of cancer incidence and the toxicity concerns of existing chemotherapeutic agents have intensified the research to explore more alternative routes to combat tumor. Luteolin, a flavone found in numerous fruits, vegetables, and herbs, has exhibited a number of biological activities, such as anticancer and anti-inflammatory. Luteolin inhibits tumor growth by targeting cellular processes such as apoptosis, cell-cycle progression, angiogenesis and migration. Mechanistically, luteolin causes cell death by downregulating Akt, PLK-1, cyclin-B1, cyclin-A, CDC-2, CDK-2, Bcl-2, and Bcl-xL, while upregulating BAX, caspase-3, and p21. It has also been reported to inhibit STAT3 signaling by the suppression of STAT3 activation and enhanced STAT3 protein degradation in various cancer cells. Therefore, extensive studies on the anticancer properties of luteolin reveal its promising role in chemoprevention. The present review describes all the possible cellular interactions of luteolin in cancer, along with its synergistic mode of action and nanodelivery insight. � 2022 by the authors.Item STAT signaling as a target for intervention: from cancer inflammation and angiogenesis to non-coding RNAs modulation(Springer Science and Business Media B.V., 2022-04-26T00:00:00) Tuli, Hardeep Singh; Sak, Katrin; Iqubal, Ashif; Garg, Vivek Kumar; Varol, Mehmet; Sharma, Uttam; Chauhan, Abhishek; Yerer, Mukerrem Betul; Dhama, Kuldeep; Jain, Manju; Jain, AklankAs a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes. � 2022, The Author(s), under exclusive licence to Springer Nature B.V.