Zoology - Master Dissertation
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/63
Browse
2 results
Search Results
Item Oxidative stress responses to sub-lethal dose of Cry toxin in the larvae of castor semilooper, Achaea janata(Central University of Punjab, 2018) Singh, Kanika; Chaitanya,R.K.Development of synthetic insecticides to reduce the level of infestation led to deleterious effects on environment and human health. This lead to the development of ecofriendly pest management alternatives including Bacillus thuringensis (Bt). Bt produce Crystal (Cry), Cytotoxic (Cyt) and Vegetative (Vip) proteins with insecticidal activity against different orders of lepidoptera. Of late, pest resistance against Bt is reported in countries.The reduced toxicity of Bt formulation from degradation by UV light, wash-off by rain, drying, temperature, and soil acidity as well as its chemistry. Further, insects sense pesticides through odorant receptors and move away quickly, there is always a possibility of a population of larvae to get exposed to sub-lethal doses of toxin which might exhibit variable effects and escape mortality and eventually generate resistance. Sub-lethal dose lead to the generation of oxidative stress in the insect and eventually scavenged by anti-oxidant enzymes. These stress responses would enhance our understanding of adaptations for survival and resistance development. The current study is an attempt to monitor the antioxidative responses at the transcriptional level upon sub-lethal exposure of Cry toxin in the larvae of an polyphagous pest castor semilooper, Achaea janata. prevalent in the Indian subcontinent.Item Role of curcumin on monoamine oxidase(MAO) enzyme expression and activity against Amyloid Beta (A?)-induced oxidative stress in human glioblastoma U-87 MG cell.(Central University of Punjab, 2018) Behera, Nishibala N; Mantha,Anil K.Glioblastoma (GBM) is the most common brain tumor in humans. The major factor responsible for its progression is oxidative stress. Oxidative stress leads to disruption of signaling pathways and damage to cells and tissues. Monoamine oxidase (MAO) is involved in oxidative deamination of endogenous biogenic amine neurotransmitters such as dopamine, serotonin, norepinephrine, and epinephrine. Therefore, MAO plays a key role in initiation and progression of GBM through oxidative stress. In the present study, A?(25-35) peptide treatment was used to induce oxidative stress in human glioblastoma (U-87 MG) cells. A?(25-35) is known to induce oxidative stress through altering the expression and activity of various antioxidant and mitochondrial enzymes. In this study, the expression and activity of MAO was evaluated through induction of oxidative stress by A?(25-35) and antioxidant treatment of Curcumin. It was found that Curcumin decreases the mRNA expression of MAO but its protein expression increases, whereas A?(25-35) showed little decrease in the mRNA expression of MAO and increase in its protein expression, thus pointing towards differential regulation of translation and transcription. The activity of MAO was found to be increased in A?(25-35), Cur and Cur+A?(25-35) . Therefore, Curcumin has little or no antioxidant effect in altering the expression and activity of MAO and A? showed its oxidative potential by increasing the expression and activity of MAO, although not very significant, possibly because it uses other pathways for inducing oxidative stress.