Biochemistry And Microbial Sciences - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27
Browse
3 results
Search Results
Item Pseudomonas citronellolis alleviates arsenic toxicity and maintains cellular homeostasis in chickpea (Cicer arietinum L.)(Elsevier Masson s.r.l., 2022-05-19T00:00:00) Adhikary, Arindam; Saini, Rashmi; Kumar, Rashpal; Singh, Inderjit; Ramakrishna, Wusirika; Kumar, SanjeevArsenic is a hazardous metalloid that causes detrimental effects on plant growth and metabolism. Plants accumulate arsenic in edible parts that consequently enter the food chain leading to many health problems. Metal tolerant plant growth-promoting bacteria (PGPB) ameliorate heavy metal toxicity. In this study, the effect of arsenic (As5+) and the role of PGPB Pseudomonas citronellolis (PC) in mitigating As5+ toxicity and associated metabolic alterations in chickpea were assessed. Five chickpea varieties (PBG1, GPF2, PDG3, PDG4 and PBG5) were evaluated for arsenic accumulation, translocation, and its interference with metabolic and defense processes. As5+ (40 mg kg?1) interfered with plant metabolism and enhanced the antioxidative and carbohydrate metabolizing enzyme's activity but PC treatment maintained the activity at par with control. PC also facilitated the accumulation of As5+ in the root system and restricted its translocation to the shoot. Further, to map the metabolic changes, Gas chromatography Mass Spectroscopy (GC-MS) based metabolite profiling and gene expression analysis (qRT-PCR) were performed in the best and worst-performing chickpea varieties (PBG1 and PBG5). 48 metabolites of various metabolic pathways (amino acid, carbohydrate, and fatty acid) were altered in As5+ and PC treatment. Gene expressions showed correlation with biochemical analysis of the antioxidative enzymes and carbohydrate metabolizing enzymes while PC treatment improved chlorophyll biosynthesis enzyme CaDALA expression in As5+ treated plants. Therefore, PC mitigates As5+ toxicity by restricting it in the roots thereby maintaining the cellular homeostasis under As5+ stress in chickpeas. � 2022 Elsevier Masson SASItem Pseudomonas citronellolis; a multi-metal resistant and potential plant growth promoter against arsenic (V) stress in chickpea(Elsevier, 2019) Adhikary, Arindam; Kumar, R; Pandir,R; Bhardwaj, Pankaj; Wusirika, Ramakrishna; Kumar, SanjeevSoil micro-biota plays a vital role in maintaining plant growth and fitness under normal and adverse conditions. Pseudomonas is one of the most important free-living and copious genera in south-west Punjab and involved in plant growth promotion under heavy metal stress. In this study, we have studied microbial diversity of the agricultural and marginal land based on 16S rRNA gene and screened eight strains of Pseudomonas for its tolerances towards various heavy metals and for plant growth promoting properties (PGP). The best strain is tested in chickpea plants against Arsenic (As5+) stress. All the strains responded differently to heavy metals viz. Arsenic, (As5+ (0.3–0.5M) and As3+ (250 μg mL−1) Cadmium (Cd2+) (250–350 μg mL−1), Chromium (Cr2+) (200–350 μg mL−1) and Mercury (Hg2+) (1–2 μg mL−1). Out of eight strains, only two strains (KM594398 and KM594397) showed plant growth promoting characters, concurrently they were highly tolerant to Arsenic (As5+). Pseudomonas citronellolis (PC) (KM594397) showed the best results in terms of As5+ tolerance and plant growth promoting activity, hence further tested for actual plant growth response in chickpea (Cicer arietinum L.) under As5+ (10–160 mg kg−1) stress. Pseudomonas citronellolis enhanced plant growth and dry biomass under As5+ stress. High As5+ tolerance and plant growth promoting activity of Pseudomonas citronellolis in chickpea especially designate this strain suitable for marginal lands and heavy metals contaminated sites. © 2019 Elsevier Masson SASItem Nutrient enhancement of chickpea grown with plant growth promoting bacteria in local soil of Bathinda, Northwestern India(Springer, 2019) Dogra, Nitin; Yadav, Radheshyam; Kaur, Manpreet; Adhikary, Arindam; Kumar, Sanjeev; Ramakrishna, WusirikaPlant growth promoting bacteria (PGPB) enhance crop productivity as part of green technology to reduce the use of chemical fertilizers. They also have the capability to enhance macro- and micronutrient content of plants. In the present study, PGPB isolates belonging to Pseudomonas citronellis (PC), Pseudomonas sp. RA6, Serratia sp. S2, Serratia marcescens CDP13, and Frateuria aurantia (Symbion-K) were tested on two chickpea varieties, PBG1 and PBG5 grown for 30 days in local soil from Bathinda region in Northwestern India. PC and CDP13 were found to be better chickpea growth stimulators compared to the commercial Symbion-K based on shoot length and biomass. Most PGPB enhanced macro- and micronutrients in shoots to varying degrees compared to the control. PBG5 gave better response compared to PBG1 with reference to plant growth attributes and enhancement of the macronutrients, calcium, nitrogen and phosphorus and micronutrients, boron, copper, iron, and zinc. PBG5 is a high yielding variety with better resistance compared to PBG1. Overall, PGPB isolated from the local soil and PGPB from other parts of India were shown to be useful for enhancement of nutrient content and plant growth.