Biochemistry And Microbial Sciences - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27
Browse
16 results
Search Results
Item Genome-wide identification of NAC transcription factors in Avena sativa under salinity stress(Elsevier B.V., 2023-10-29T00:00:00) Bokolia, Muskan; Singh, Baljinder; Kumar, Avneesh; Goyal, Nandni; Singh, Kashmir; Chhabra, RavindreshBackground: NAC (NAM, ATAF1/2, and CUC2) is one of the most prominent family of plant-specific transcription factors that play diverse roles in plant growth and development as well as in abiotic stress responses in plants. The members of this family are recognized by presence of typical conserved NAC domain at the N-terminal and diverse C-terminal region. Results: In this study, we have identified 101 Avena sativa NAC (AsNAC) genes from the available Avena genome database. Genes were analyzed for their physicochemical properties, conserved motifs, gene structure, chromosomal localization, phylogenetic relationship, and cis-acting elements. The phylogenetic analysis illustrated that there were 15 subgroups in both Avena sativa and Arabidopsis thaliana. Mainly four types of cis-acting regulatory elements were present in the promoter regions of NAC genes, including hormone-responsive, light-responsive, stress-responsive and growth and developmental responsive elements. The chromosomal mapping analysis concluded that 101 NAC genes of Avena sativa were unevenly distributed on 21 chromosomes. Expression analysis identified 27 Avena NAC genes that respond to salt stress based on transcriptomic data analysis available on the NCBI SRA database. Significance: The genome-wide identification and molecular analysis of NAC TFs involved in environmental stress responses have the ability to overcome the limitations that came across in producing the transgenic crops with superior quality and improved production under abiotic stressed conditions. Future prospectives: These NAC genes may be considered as potential candidates for further explorations of functional analysis and could be used to develop stress tolerant lines in Avena sativa. � 2023 The Author(s)Item Preparation, Characterization, and Biological Potential of Nanoemulsion from Rosmarinus officinalis L. Essential Oil(Springer, 2023-10-02T00:00:00) Sharma, Arun Dev; Chhabra, Ravindresh; Jain, Puneet; Kaur, Inderjeet; Chauhan, Amrita; Rani, RetikaEssential oil from Rosmarinus officinalis (also known as rosemary essential oil) is used as traditional medicine and used as therapeutic in medicine, food, and cosmetic sectors. However, this oil is highly unstable, volatile, and prone to oxidation which limits its use. Thus, encapsulation is the better way to protect this oil from adverse conditions. The objective of this study was synthesis of rosemary essential oil (REO) based O/W (oil/water) nanoemulsions (designated as RNE) and evaluation of its biological potential. Physiological characterization was carried out using, UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic, and anti-inflammatory were also estimated. Pharmacokinetics studies on RNE were carried out. Encapsulation efficiency of RNE was found to be 92%. RNE nanoemulsions were spherical in shape with globule size, Z-Average (nm) size 220 nm, zeta potential ?11.33 mV, and polydispersity index was 0.47. RNE nanoemulsions were stable even after 50 days of storage at different temperatures. Antioxidant potential of RNE was conducted by various assays and IC50 were DPPH free radical scavenging activity: 21.53, nitric oxide radical scavenging activity: 26.66, hydroxyl radical scavenging activity: 32.69, ABTS radical scavenging activity: 33.05, and iron chelating assay: 38.78. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with RNE was 23% at higher concentration of 5 ?g. Antidiabetic study revealed that RNE inhibited ?-amylase in a concentration dependent manner, with 71% inhibition at its higher concentration of 250 ?g. RNE depicted maximum antibacterial activity against Bacillus subtilis at higher concentration of 300 ?g. Drug kinetic study revealed that nanoemulsions exhibited Korsmeyer�Peppas model. Based on this, the possible role of R. officinalis oil-based nanoemulsions in food, cosmetic, and pharma sectors has been discussed. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Analysis of the Inhibitory Effect of hsa-miR-145-5p and hsa-miR-203a-5p on Imatinib-Resistant K562 Cells by GC/MS Metabolomics Method(American Chemical Society, 2023-09-14T00:00:00) Singh, Priyanka; Yadav, Radheshyam; Verma, Malkhey; Chhabra, RavindreshImatinib (IM) resistance is considered to be a significant challenge in the management of chronic myeloid leukemia (CML). Previous studies have reported that hsa-miR-145-5p and hsa-miR-203a-5p can overcome IM resistance and hsa-miR-203a-5p can alter glutathione metabolism in IM-resistant cells. The purpose of this study was to examine whether hsa-miR-145-5p or hsa-miR-203a-5p counters IM resistance by targeting the overall metabolic profile of IM-resistant K562 cells. The metablic profiling of cell lysates obtained from IM-sensitive, IM-resistant, and miR-transfected IM-resistant K562 cells was carried out using the GC-MS technique. Overall, 75 major metabolites were detected, of which 32 were present in all samples. The pathway analysis of MetaboAnalyst 5.0 revealed that the majorly enriched pathways included glucose metabolism, fatty acid biosynthesis, lipogenesis, and nucleotide metabolism. Eleven of identified metabolites, l-glutamine, l-glutamic acid, l-lactic acid, phosphoric acid, 9,12-octadecadienoic acid, 9-octadecenoic acid, myristic acid, palmitic acid, cholesterol, and ?-alanine, appeared in enriched pathways. IM-resistant cells had comparatively higher concentrations of all of these metabolites. Notably, the introduction of hsa-miR-145-5p or hsa-miR-203a-5p into resistant cells resulted in a decrease in levels of these metabolites. The efficacy of miR-203a-5p was particularly remarkable in comparison with miR-145-5p, as evidenced by partial least-squares-discriminant analysis (PLS-DA), which showed a high level of similarity in metabolic profile between IM-sensitive K562 cells and IM-resistant cells transfected with hsa-miR-203a-5p. The results indicate that GC-MS-based metabolic profiling has the potential to distinguish between drug-resistant and -sensitive cells. This approach can also be used to routinely monitor therapeutic response in drug-resistant patients, thus, enabling personalized therapy. � 2023 American Society for Mass Spectrometry. Published by American Chemical Society. All rights reserved.Item Nanoemulsions (O/W) prepared from essential oil extracted from Melaleuca alternifolia: synthesis, characterization, stability and evaluation of anticancerous, anti-oxidant, anti-inflammatory and antidiabetic activities(Taylor and Francis Ltd., 2023-08-28T00:00:00) Sharma, Arun Dev; Chhabra, Ravindresh; Jain, Puneet; Kaur, Inderjeet; Amrita; BhawnaEssential oil from Melaleuca alternifolia (also known as Tea tree essential oil, TTO) is used as traditional medicine and used as therapeutic in medicine, food and cosmetic sectors. However, this oil is highly unstable, volatile and prone to oxidation which limits its practical use. The objective of this study was synthesis of tea tree oil based O/W (oil/water) nanoemulsions (tea tree essential oil nanoemulsions, TNE) and evaluation of its biological potential. Physiological characterization was carried out using UV, fluorescent, and FT-IR techniques. Various biological activities such as anticancerous, antidiabetic and anti-inflammatory were also estimated. Pharmacokinetics study on TNE was carried out. Encapsulation efficiency of nanoemulsions was found to be 83%. Nanoemulsions were spherical in shape with globule size 308 nm, zeta potential ?9.42 and polydispersity index was 0.31. Nanoemulsions were stable even after 50 days of storage at different temperatures. Anti-oxidant potential of TNE was conducted by various assays and IC50 were: Nitric oxide radical scavenging activity:225.1, DPPH radical scavenging activity:30.66, Iron chelating assay:38.73, and Iron reducing assay:39.36. Notable anticancer activity was observed with the percent cell viability of HeLa cells after treatment with 1, 2 and 5 �l of TNE was 82%, 41% and 24%, respectively. Antidiabetic study revealed that TNE inhibited -amylase in a dose-dependent manner, with 88% inhibition at its higher volume of 250 �l. Drug kinetic study revealed that nanoemulsions exhibited first-order model. Based on this, the possible role of M. alternifolia oil-based nanoemulsions in cosmetic, food, and pharma sectors has been discussed. � 2023 Informa UK Limited, trading as Taylor & Francis Group.Item MSMEG-5850, a stress-induced TetR protein, involved in global transcription regulation in Mycobacterium smegmatis(Newlands Press Ltd, 2023-06-07T00:00:00) Singh, Parul; Kumar, Arbind; Chhabra, Ravindresh; Singh, Kashmir; Kaur, JagdeepAim: To decipher the role of MSMEG-5850 in the physiology of mycobacteria. Methods: MSMEG-5850 was knocked out and RNA sequencing was performed. MSMEG-5850 protein was purified from the Escherichia coli pET28a system. Electrophoretic mobility shift assay and size exclusion chromatography were used to determine the binding of MSMEG-5850 to its motif and binding stoichiometry. The effect of nutritional stress was monitored. Results: Transcriptome analysis revealed the differential expression of 148 genes in an MSMEG-5850 knockout strain. MSMEG-5850 had control over 50 genes because those genes had a binding motif upstream of their sequence. The electrophoretic mobility shift assay showed MSMEG-5850 bound to its motif as a monomer. MSMEG-5850 was upregulated under nutritional stress and promoted the survival of mycobacteria. Conclusion: The study confirms the role of MSMEG-5850 in global transcriptional regulation. � 2023 Future Medicine Ltd.Item snoRNAs in hematopoiesis and blood malignancies: A comprehensive review(John Wiley and Sons Inc, 2023-05-15T00:00:00) Challakkara, Mohamed Fahad; Chhabra, RavindreshSmall nucleolar RNAs (snoRNAs)�are noncoding RNA molecules of highly variable size, usually ranging from 60 to 150 nucleotides. They are classified into H/ACA box snoRNAs, C/D box snoRNAs, and scaRNAs. Their functional profile includes biogenesis of ribosomes, processing of rRNAs, 2?-O-methylation and pseudouridylation of RNAs, alternative splicing and processing of mRNAs and the generation of small RNA molecules like miRNA. The snoRNAs have been observed to have an important role in hematopoiesis and malignant hematopoietic conditions including leukemia, lymphoma, and multiple myeloma. Blood malignancies arise in immune system cells or the bone marrow due to chromosome abnormalities. It has been estimated that annually over 1.25 million cases of blood cancer occur worldwide. The snoRNAs often show a differential expression profile in blood malignancies. Recent reports associate the abnormal expression of snoRNAs with the inhibition of apoptosis, uncontrolled cell proliferation, angiogenesis, and metastasis. This implies that targeting snoRNAs could be a potential way to treat hematologic malignancies. In this review, we describe the various functions of snoRNAs, their role in hematopoiesis, and the consequences of their dysregulation in blood malignancies. We also evaluate the potential of the dysregulated snoRNAs as biomarkers and therapeutic targets for blood malignancies. � 2023 Wiley Periodicals LLC.Item Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives(Springer, 2023-04-25T00:00:00) Ranga, Shalu; Yadav, Ritu; Chhabra, Ravindresh; Chauhan, Meenakshi B.; Tanwar, Mukesh; Yadav, Chetna; Kadian, Lokesh; Ahuja, ParulCervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer(Elsevier Masson s.r.l., 2023-02-09T00:00:00) Mukherjee, Soumi; Bhatti, Gurjit Kaur; Chhabra, Ravindresh; Reddy, P. Hemachandra; Bhatti, Jasvinder SinghThe importance of mitochondria is not only limited to energy generation but also in several physical and chemical processes critical for cell survival. Mitochondria play an essential role in cellular apoptosis, calcium ion transport and cellular metabolism. Mutation in the nuclear and mitochondrial genes, altered oncogenes/tumor suppressor genes, and deregulated signalling for cell viability are major reasons for cancer progression and chemoresistance. The development of drug resistance in cancer patients is a major challenge in cancer treatment as the resistant cells are often more aggressive. The drug resistant cells of numerous cancer types exhibit the deregulation of mitochondrial function. The increased biogenesis of mitochondria and its dynamic alteration contribute to developing resistance. Further, a small subpopulation of cancer stem cells in the heterogeneous tumor is primarily responsible for chemoresistance and has an attribute of mitochondrial dysfunction. This review highlights the critical role of mitochondrial dysfunction in chemoresistance in cancer cells through the processes of apoptosis, autophagy/mitophagy, and cancer stemness. Mitochondria-targeted therapeutic strategies might help reduce cancer progression and chemoresistance induced by various cancer drugs. � 2023Item miR-145-5p and miR-203a-5p overcome imatinib resistance in myelogenous leukemic cells through metabolic reprogramming(National Institute of Science Communication and Policy Research, 2023-03-01T00:00:00) Singh, Priyanka; Gupta, Sonu Kumar; Ali, Villayat; Chhabra, Ravindresh; Verma, MalkheyImatinib is the most effective therapy for chronic myeloid leukemia (CML), but many patients eventually develop resistance to it after an initial satisfactory response. This study investigated the potential of three miRNAs (miR-106b-5p, miR-145-5p, miR-203a-5p) in overcoming imatinib resistance in leukemic cells. The imatinib-resistant K562 (IR-K562) cells were developed and transfected with one of the three miRNAs to evaluate their potency in overcoming imatinib resistance. The changes in the metabolic profile were studied using flux balance analysis (FBA) and the data was validated using qRT-PCR.Among the three miRNAs, the ectopic expression of either miR-145-5p or miR-203a-5p was able to sensitize the IR-K562 cells to imatinib. The concentration of key oncometabolites; glucose, lactate, and glutamine, in the culture media of the miR-transfected IR-K562 cells, reverted to the same levels as seen in imatinib-sensitive K562 cells. In addition, the FBA analysis revealed that the metabolism of lipid, fatty acids, and electron transport chain were significantly altered in resistant cells. The FBA data was also validated at the molecular level. Interestingly, the imatinib treatment coupled with the transfection of miR-145-5p or miR-203a-5p cells could reverse the metabolic flux of IR-K562 to the levels seen in imatinib-sensitive K562 cells. This study highlights the key metabolic changes that occur during development of imatinib resistance. It also identifies the specific miRNAs which can be targeted to overcome imatinib resistance in CML. � 2023, National Institute of Science Communication and Policy Research. All rights reserved.Item Antileukemic Activity of hsa-miR-203a-5p by Limiting Glutathione Metabolism in Imatinib-Resistant K562 Cells(MDPI, 2022-12-19T00:00:00) Singh, Priyanka; Yadav, Radheshyam; Verma, Malkhey; Chhabra, RavindreshImatinib has been the first and most successful tyrosine kinase inhibitor (TKI) for chronic myeloid leukemia (CML), but many patients develop resistance to it after a satisfactory response. Glutathione (GSH) metabolism is thought to be one of the factors causing the emergence of imatinib resistance. Since hsa-miR-203a-5p was found to downregulate Bcr-Abl1 oncogene and also a link between this oncogene and GSH metabolism is reported, the present study aimed to investigate whether hsa-miR-203a-5p could overcome imatinib resistance by targeting GSH metabolism in imatinib-resistant CML cells. After the development of imatinib-resistant K562 (IR-K562) cells by gradually exposing K562 (C) cells to increasing doses of imatinib, resistant cells were transfected with hsa-miR-203a-5p (R+203). Thereafter, cell lysates from various K562 cell sets (imatinib-sensitive, imatinib-resistant, and miR-transfected imatinib-resistant K562 cells) were used for GC-MS-based metabolic profiling. L-alanine, 5-oxoproline (also known as pyroglutamic acid), L-glutamic acid, glycine, and phosphoric acid (Pi)�five metabolites from our data, matched with the enumerated 28 metabolites of the MetaboAnalyst 5.0 for the GSH metabolism. All of these metabolites were present in higher concentrations in IR-K562 cells, but intriguingly, they were all reduced in R+203 and equated to imatinib-sensitive K562 cells (C). Concludingly, the identified metabolites associated with GSH metabolism could be used as diagnostic markers. � 2022 by the authors.