Biochemistry And Microbial Sciences - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Discovery of Natural Anti-Apoptotic Protein Inhibitor Using Molecular Docking and MM-GBSA Approach: An Anticancer Intervention
    (AMG Transcend Association, 2022-12-27T00:00:00) Dey, Sarbjit; Singh, Atul Kumar; Kumar, Shashank
    Apoptosis is a programmed molecular phenomenon in normal cells, and "evading apoptosis" is a hallmark of cancer. Overexpression of anti-apoptotic BCL-2 promotes cancer cell survival, leading to tumor formation, its maintenance and progression, and further chemoresistance. Therefore, BCL-2 is considered an exciting drug target in clinical studies. The Cip/Kip family protein p21, which acts as an inhibitor of cyclin-CDK complexes, can also exert anti-apoptotic function and thus be involved in cancer initiation and progression. Preliminary research suggests that Piper chaba phytochemical(s) possess anticancer activity, but the underlying mechanism is yet to be established. For the first time, we explored Piper chaba phytochemicals for their anti-apoptotic protein (BCL-2 and p21) inhibition potential using molecular docking and MM-GBSA experiments. UC2288 and Venetoclax were known standards for BCL-2 and p21 proteins, respectively. We also explored the pharmacokinetics and drug-likeness properties of lead molecules using the SwissADME web tool. A total of 45 P. chaba phytochemicals were identified from published literature and docked at the drug-binding site of target proteins. Chabamide F, Piperchabaoside B, Piperundecalidiene, and Chabamide G showed ? binding affinity (-9.0 kcal/mole) than UC2288, while Brachystamide B showed lower binding affinity (-9.7 kcal/mole) than Venetoclax. MM-GBSA results revealed Chabamide F has a higher binding affinity for p21 than the standard compound. Therefore, P. chaba phytoconstituents qualify for further experiments on the drug discovery process to target anti-apoptosis proteins in cancer cells. � 2022 by the authors.