Biochemistry And Microbial Sciences - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27
Browse
2 results
Search Results
Item Acarbose Potentially Binds to the Type I Peptide Deformylase Catalytic Site and Inhibits Bacterial Growth: An In Silico and In Vitro Study(Bentham Science Publishers, 2022-09-23T00:00:00) Singh, Atul Kumar; Prajapati, Kumari Sunita; Kumar, ShashankBackground: In bacteria, peptide deformylase (PDF), a metalloenzyme, removes N-formyl methio-nine from a nascent protein, which is a critical step in the protein maturation process. The enzyme is ubiqui-tously present in bacteria and possesses therapeutic target potential. Acarbose, an FDA-approved antidiabetic drug, is an alpha-glucosidase inhibitor of microbial origin. Clinical studies indicate that acarbose administration in humans can alter gut microbiota. As per the best of our knowledge, the antibacterial potential of acarbose has not been reported. Objective: The present study aimed to check the binding ability of acarbose to the catalytic site of E. coli PDF and assess its in vitro antibacterial activity. Methods: Molecular docking, molecular dynamic (MD) simulation, and MM-PBSA experiments were per-formed to study the binding potential of the catalytic site, and a disc diffusion assay was also employed to assess the antibacterial potential of acarbose. Results: Acarbose was found to form a hydrogen bond and interact with the metal ion present at the catalytic site. The test compound showed a better docking score in comparison to the standard inhibitor of PDF. MD simulation results showed energetically stable acarbose-PDF complex formation in terms of RMSD, RMSF, Rg, SASA, and hydrogen bond formation throughout the simulation period compared to the actinonin-PDF complex. Furthermore, MM-PBSA calculations showed better binding free energy (?G) of acarbose PDF than the actinonin-PDF complex. Moreover, acarbose showed in vitro antibacterial activity. Conclusion: Acarbose forms conformational and thermodynamically stable interaction with the E. coli peptide deformylase catalytic site. Results of the present work necessitate in-depth antimicrobial potential studies on the effect of acarbose on drug resistance and nonresistant bacteria. � 2022 Bentham Science Publishers.Item Withaferin A mediated changes of miRNA expression in breast cancer-derived mammospheres(John Wiley and Sons Inc, 2022-06-30T00:00:00) Prajapati, Kumari Sunita; Shuaib, Mohd.; Gupta, Sanjay; Kumar, ShashankBreast cancer is a heterogeneous disease consisting of atypical cell populations that share stem cell-like characteristics associated with therapeutic resistance, disease relapse, and poor clinical outcome. MicroRNAs (miRNA),�and small noncoding RNA, are pivotal in the regulation of self-renewal, stemness, and cellular differentiation. Withaferin A (WA), a steroidal lactone, is a major bioactive constituent of Withania somnifera (Solanaceae) known for its anticancer properties. In this study, the effect of WA on modulation of miRNA expression in breast cancer-derived mammosphere was assessed utilizing small RNA sequencing. Treatment with WA inhibited MCF-7 and T47D cells derived mammosphere formation with a significant decrease in CD44, EpCAM, Nanog, OCT4, and SOX2 as markers of self-renewal and stemness. Small RNA sequencing demonstrated a total of 395 differentially expressed miRNAs (DEMs) including 194 upregulated and 201 downregulated miRNAs in WA-treated�MCF-7 mammospheres. Bioinformatics analysis utilizing the�KEGG pathway, Gene Ontology enrichment, protein?protein, and miRNA-mRNA interaction network identified altered expression in a few hub genes viz.�AKT1, PTEN, MYC, CCND1,�VEGFA,�NOTCH1, and�IGFR1�associated with DEMs in WA-treated�mammospheres. Further quantitative�RT-PCR analysis validated the expression of DEMs including miR-549a-5p, miR-1247-5p, miR-124-5p, miR-137-5p, miR-34a-5p, miR-146a-5p, miR-99a-5p, miR-181a-5p, let-7c-5p, and let-7a-5p. In particular, let-7c-5p is designated as a tumor suppressor in breast cancer. An increase in miR-let-7c-5p expression was noted after WA treatment, with a simultaneous decrease in CCND1 and c-MYC at mRNA and protein levels. Taken together, our study demonstrated WA-mediated miRNA expression, in particular, upregulation of miR-let-7c-5p, leads to the inhibition of breast cancer cells derived mammospheres. � 2022 Wiley Periodicals LLC.