Biochemistry And Microbial Sciences - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Emerging role of ZBTB7A as an oncogenic driver and transcriptional repressor
    (Elsevier, 2020) Gupta, S; Singh, A.K; Prajapati, K.S; Kushwaha, P.P; Shuaib, M; Kumar, S.
    ZBTB7A is a member of the POK family of transcription factors that possesses a POZ-domain at the N-terminus and Krüppel-like zinc-finger at the c-terminus. ZBTB7A was initially isolated as a protein that binds to the inducer of the short transcript of HIV-1 virus TAT gene promoter. The protein forms a homodimer through protein-protein interaction via the N-terminus POZ-domains. ZBTB7A typically binds to the DNA elements through its zinc-finger domains and represses transcription both by modification of the chromatin organization and through the direct recruitment of transcription factors to gene regulatory regions. ZBTB7A is involved in several fundamental biological processes including cell proliferation, differentiation, and development. It also participates in hematopoiesis, adipogenesis, chondrogenesis, cellular metabolism and alternative splicing of BCLXL, DNA repair, development of oligodendrocytes, osteoclast and unfolded protein response. Aberrant ZBTB7A expression promotes oncogenic transformation and tumor progression, but also maintains a tumor suppressive role depending on the type and genetic context of cancer. In this comprehensive review we provide information about the structure, function, targets, and regulators of ZBTB7A and its role as an oncogenic driver and transcriptional repressor in various human diseases. - 2020 Elsevier B.V.
  • Thumbnail Image
    Item
    Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human
    (Springer, 2020) Senapati, S; Kumar, S; Singh, A.K; Banerjee, P; Bhagavatula, S.
    At present, more than 200 countries and territories are directly affected by the coronavirus disease-19 (COVID-19) pandemic. Incidence and case fatality rate are significantly higher among elderly individuals (age > 60 years), type 2 diabetes and hypertension patients. Cellular receptor ACE2, serine protease TMPRSS2 and exopeptidase CD26 (also known as DPP4) are the three membrane bound proteins potentially implicated in SARS-CoV-2 infection. We hypothesised that common variants from TMPRSS2 and CD26 may play critical role in infection susceptibility of predisposed population or group of individuals. Coding (missense) and regulatory variants from TMPRSS2 and CD26 were studied across 26 global populations. Two missense and five regulatory SNPs were identified to have differential allelic frequency. Significant linkage disequilibrium (LD) signature was observed in different populations. Modelled protein?protein interaction (PPI) predicted strong molecular interaction between these two receptors and SARS-CoV-2 spike protein (S1 domain). However, two missense SNPs, rs12329760 (TMPRSS2) and rs1129599 (CD26), were not found to be involved physically in the said interaction. Four regulatory variants (rs112657409, rs11910678, rs77675406 and rs713400) from TMPRSS2 were found to influence the expression of TMPRSS2 and pathologically relevant MX1. rs13015258 a 5? UTR variant from CD26 have significant role in regulation of expression of key regulatory genes that could be involved in SARS-CoV-2 internalization. Overexpression of CD26 through epigenetic modification at rs13015258-C allele was found critical and could explain the higher SARS-CoV-2 infected fatality rate among type 2 diabetes. 2020, Indian Academy of Sciences.
  • Thumbnail Image
    Item
    Emerging Role of Migration and Invasion Enhancer 1 (MIEN1) in Cancer Progression and Metastasis
    (Frontiers Media S.A., 2019) Kushwaha, P.P; Gupta, S; Singh, A.K; Kumar, S.
    Tumor metastasis is a sequential event accounting for numerous cancer-related fatalities worldwide. The process of metastasis serially involves invasion, intravasation, extravasation, and tumor growth at the secondary site. Migration and invasion enhancer 1 (MIEN1) is a membrane associated protein overexpressed in various human cancers. Biological activity of MIEN1 is driven by geranylgeranyltransferase-I mediated prenylation at CAAX motif and methylation of the prenylated protein that anchors MIEN1 into the cellular membrane. Post-translationally modified MIEN1 interacts with Syk kinase and Annexin A2 protein; polymerizes G-actin and stabilizes F-actin filament; induces focal adhesion kinase phosphorylation and decrease cofilin phosphorylation implicated in both invasion and metastasis of different cancer types. In the present review, we discuss the structure, function, and involvement of MIEN1 in cancer progression. We also highlight the future prospects of MIEN1 as an emerging molecule and novel target in cancer cell invasion and metastasis.