Biochemistry And Microbial Sciences - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Novel pharmacological approach for the prevention of multidrug resistance (MDR) in a human leukemia cell line
    (Elsevier Ltd, 2021-06-11T00:00:00) Gupta, Sonu Kumar; Singh, Priyanka; Chhabra, Ravindresh; Verma, Malkhey
    Background: Drug resistance mechanisms are the regulatory factors associated with drug metabolism and drug transport to inward and outward of the target cells. Maybridge fragment (MBF) library is a collection of pharmacophore rich compounds having affinity with membrane transporters. This study has been designed to evaluate the efficacy of MBFs in overcoming the leukemic cells� resistance to imatinib. Methods: Imatinib resistant cells (K562-R) were prepared using myelogenous leukemia cell line (K562) by titration method. The four MBFs were prioritized for determining their effect on imatinib resistance. The cells were treated with imatinib and MBFs and the MTT assay was performed to evaluate the efficacy of MBFs in enhancing the imatinib mediated cell death. The transcript levels of Bcr-Abl1 gene and efflux transporter genes were determined by RT-qPCR analysis. Results: The MBFs enhanced the imatinib mediated cell death of K562-R cells. There was also a significant decrease in the mRNA levels of the major drug efflux genes (ABCB1, ABCB10, ABCC1 and ABCG2) when treated with a combination of imatinib and MBF in comparison to imatinib treatment alone. Conclusion: The drug efflux is one of the mechanisms of multidrug resistance in cancer cells and the MBFs used in this study were all found to significantly overcome the imatinib resistance by limiting the expression of efflux genes. This study, therefore, highlights the potential of Maybridge compounds in treating the drug resistant leukemia. � 2021 Elsevier Ltd
  • Item
    Combating TKI resistance in CML by inhibiting the PI3K/Akt/mTOR pathway in combination with TKIs: a review
    (Springer, 2021-01-16T00:00:00) Singh, Priyanka; Kumar, Veerandra; Gupta, Sonu Kumar; Kumari, Gudia; Verma, Malkhey
    Chronic myeloid leukemia (CML), a myeloproliferative hematopoietic cancer, is caused by a genetic translocation between chromosomes 9 and 22. This translocation produces a small Philadelphia chromosome, which contains the Bcr-Abl oncogene. The Bcr-Abl oncogene encodes the BCR-ABL protein, upregulates various signaling pathways (JAK-STAT, MAPK/ERK, and PI3K/Akt/mTOR), and out of which the specifically highly active pathway is the PI3K/Akt/mTOR pathway. Among early treatments for CML, tyrosine kinase inhibitors (TKIs) were found to be the most effective, but drug resistance against kinase inhibitors led to the discovery of novel alternative therapies. At this point, the PI3K/Akt/mTOR pathway components became new targets due to stimulation of this pathway in TKIs-resistant CML patients. The current review article deals with reviewing the scientific literature on the PI3K/Akt/mTOR pathway inhibitors listed in the National Cancer Institute (NCI) drug dictionary and proved effective against multiple cancers. And out of those enlisted inhibitors, the US FDA has also approved some PI3K inhibitors (Idelalisib, Copanlisib, and Duvelisib) and mTOR inhibitors (Everolimus, Sirolimus, and Temsirolimus) for cancer therapy. So far, several inhibitors have been tested, and further investigations are still ongoing. Even in Imatinib, Nilotinib, and Ponatinib-resistant CML cells, a dual PI3K/mTOR inhibitor, BEZ235, showed antiproliferative activity. Therefore, by considering the literature data of these reviews and further examining some of the reported inhibitors, which proved effective against the PI3K/Akt/mTOR signaling pathway in multiple cancers, may improve the therapeutic approaches towards TKI-resistant CML cells where the respective signaling pathway gets upregulated. � 2021, Springer Science+Business Media, LLC, part of Springer Nature.