Biochemistry And Microbial Sciences - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Discovery of differentially expressed novel miRNAs in breast normal cells and their putative targets
    (Springer, 2023-01-21T00:00:00) Shuaib, Mohd; Prajapati, Kumari Sunita; Singh, Atul Kumar; Kumar, Shashank
    MicroRNAs (miRNAs) play critical role in normal breast development and their altered expression may lead to breast cancer. Identification of new miRNAs allows us to understand the normal physiological process and associated disease pathophysiology. In the present study we identify the novel miRNAs in withaferin A treated breast normal cells (MCF-10A) using small RNA sequencing. The pathophysiological potential of the identified miRNAs was checked by studying their expression pattern in MDA-MB-231 and MCF-7 breast cancer cells using qRT-PCR technique. The secondary/tertiary structure of the identified miRNAs, target gene enrichment in Gene Ontology terms and KEGG pathway, miRNA-mRNA interaction of the sorted target genes, miRNA-mRNA/miRNA-argonaute protein/miRNA-mRNA-argonaute protein interaction and stability, were studied using bioinformatics tools/software, and molecular dynamics simulations. Hsa-miR-N88585 and hsa-miR-N461089 were identified and validated as novel miRNAs in normal breast cells. Up-expression of identified miRNAs in MDA-MB-231 and MCF-7 cells indicates their oncogenic nature. Identified target genes were enriched in classical signaling pathways (AMPK and Ras) and important GO terms. PLXDC2, BHLHE40, ARMC8, and PECAM1, CDC27, KCNK3 genes were sorted as putative targets for hsa-miR-N88585 and hsa-miR-N461089, respectively. MD simulation revealed stable hsa-miR-N88585/hsa-miR-N461089-AGO protein complex formation which indicates their further processing. In conclusion, the study identifies hsa-miR-N88585 and hsa-miR-N461089 as novel miRNAs in breast normal cells which are significantly inversely expressed in breast cancer cells. Further experiments are required to study the role of identified novel miRNAs in normal breast development and pathophysiology of breast cancer. Graphical abstract: [Figure not available: see fulltext.]. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Identification of Novel Indole Derivatives as Potent ?-Amylase Inhibitors for the Treatment of Type-II Diabetes Using in-Silico Approaches
    (AMG Transcend Association, 2022-04-09T00:00:00) Khatabi, Khalil El; El-Mernissi, Reda; Hajji, Halima; Singh, Atul Kumar; Ajana, Mohammed Aziz; Lakhlifi, Tahar; Kumar, Shashank; Bouachrine, Mohammed
    The ?-amylase is regarded as a promising drug target for diabetes mellitus-type II. Hence, inhibiting ?-amylase activity is a potential drug discovery approach for treating this chronic metabolic disorder. The present study explores the structural requirements and understands the inhibition mechanism of the novel developed indole-based derivatives as ?-amylase inhibitors through 3D-QSAR, molecular docking, ADMET, and molecular dynamics (MD) simulation. The 3D-QSAR study showed good statistical reliability for two developed predictive models; CoMFA and CoMSIA. Through a deep investigation of docking analysis, detailed interactions with ?-amylase of the most active compound 7 were explored. Four new indole derivatives were designed based on the contour maps and docking analysis, with significantly higher inhibitory activity than the molecules in the dataset. The selected molecules were evaluated for pharmacokinetic properties, showing a reasonably good ADMET profile. Furthermore, a 20-ns MD simulation of selected compounds bound to ?-amylase was performed to ensure stability during simulation further. Greater stability of the designed molecule-protein complex A1 was found. The present findings shed light on the binding mode and the interactions between newly designed compounds, especially compound A1 and ?-amylase and may be beneficial for drug development efforts targeting type-II diabetes. � 2022 by the authors.
  • Item
    A candidate triple-negative breast cancer vaccine design by targeting clinically relevant cell surface markers: an integrated immuno and bio-informatics approach
    (Springer Science and Business Media Deutschland GmbH, 2022-02-20T00:00:00) Kumar, Shashank; Shuaib, Mohd; Prajapati, Kumari Sunita; Singh, Atul Kumar; Choudhary, Princy; Singh, Sangeeta; Gupta, Sanjay
    Triple-negative breast cancer (TNBC) is an aggressive, metastatic/invasive sub-class of breast cancer (BCa). Cell surface protein-derived multi-epitope vaccine-mediated targeting of TNBC cells could be a better strategy against the disease. Literature-based identified potential cell surface markers for TNBC cells were subjected to expression pattern and survival analysis in BCa patient sample using TCGA database. The cytotoxic and helper T-lymphocytes antigenic epitopes in the test proteins were identified, selected and fused together with the appropriate linkers and an adjuvant, to construct the multi-epitope vaccine (MEV). The immune profile, physiochemical property (PP) and world population coverage of the MEV was studied. Immune simulation, cloning in a suitable vector, molecular docking (against Toll-like receptors, MHC (I/II) molecules), and molecular dynamics simulations of the MEV was performed. Cell surface markers were differentially expressed in TNBC samples and showed poor survival in TNBC patients. Satisfactory PP and WPC (up to 89 and 99%) was observed. MEV significant stable binding with the immune molecules and induced the immune cells in silico. The designed vaccine has capability to elicit immune response which could be utilized to target TNBC alone/combination with other therapy. The experimental studies are required to check the efficacy of the vaccine. � 2022, King Abdulaziz City for Science and Technology.