Biochemistry And Microbial Sciences - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27
Browse
6 results
Search Results
Item Immunodominant conserved moieties on spike protein of SARS-CoV-2 renders virulence factor for the design of epitope-based peptide vaccines(Springer, 2023-11-23T00:00:00) Mohapatra, Subhashree; Kumar, Santosh; Kumar, Shashank; Singh, Atul Kumar; Nayak, BismitaThe outbreak of novel SARS-CoV-2 virion has wreaked havoc with a high prevalence of respiratory illness and high transmission due to a vague understanding of the viral antigenicity, augmenting the dire challenge to public health globally. This viral member necessitates the expansion of diagnostic and therapeutic tools to track its transmission and confront it through vaccine development. Therefore, prophylactic strategies are mandatory. Virulent spike proteins can be the most desirable candidate for the computational design of vaccines targeting SARS-CoV-2, followed by the meteoric development of immune epitopes. Spike protein was characterized using existing bioinformatics tools with a unique roadmap related to the immunological profile of SARS-CoV-2 to predict immunogenic virulence epitopes based on antigenicity, allergenicity, toxicity, immunogenicity, and population coverage. Applying in silico approaches, a set of twenty-four B lymphocyte-based epitopes and forty-six T lymphocyte-based epitopes were selected. The predicted epitopes were evaluated for their intrinsic properties. The physico-chemical characterization of epitopes qualifies them for further in vitro and in vivo analysis and pre-requisite vaccine development. This study presents a set of screened epitopes that bind to HLA-specific allelic proteins and can be employed for designing a peptide vaccine construct against SARS-CoV-2 that will confer vaccine-induced protective immunity due to its structural stability. � 2023, The Author(s), under exclusive licence to Indian Virological Society.Item Identification of multi-targeting natural antiviral peptides to impede SARS-CoV-2 infection(Springer, 2022-12-17T00:00:00) Singh, Satyendra; Chauhan, Priya; Sharma, Vinita; Rao, Abhishek; Kumbhar, Bajarang Vasant; Prajapati, Vijay KumarSARS-CoV-2 and its variants cause serious health concerns throughout the world. The alarming increase in the daily number of cases has become a nightmare in many low-income countries; although some vaccines are available, their high cost and low vaccine production make them unreachable to ordinary people in developing countries. Other treatment strategies are required for novel therapeutic options. The peptide-based drug is one of the alternatives with low toxicity, more specificity, and ease of synthesis. Herein, we have applied structure-based virtual screening to identify potential peptides targeting the critical proteins of SARS-CoV-2. Non-toxic natural antiviral peptides were selected from the enormous number of peptides. Comparative modeling was applied to prepare a 3D structure of selected peptides. 3D models of the peptides were docked using the ClusPro docking server to determine their binding affinity and peptide-protein interaction. The high-scoring peptides were docked with other crucial proteins to analyze multiple targeting peptides. The two best peptides were subjected to MD simulations to validate the structure stability and evaluated RMSD, RMSF, Rg, SASA, and H-bonding from the trajectory analysis of 100�ns. The proposed lead peptides can be used as a broad-spectrum drug and potentially develop as a therapeutic to combat SARS-CoV-2, positively impacting the current pandemic. � 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Item Identification of Natural Inhibitors Against SARS-CoV-2 Drugable Targets Using Molecular Docking, Molecular Dynamics Simulation, and MM-PBSA Approach(Frontiers Media S.A., 2021-08-12T00:00:00) Kushwaha, Prem Prakash; Singh, Atul Kumar; Bansal, Tanya; Yadav, Akansha; Prajapati, Kumari Sunita; Shuaib, Mohd; Kumar, ShashankThe present study explores the SARS-CoV-2 drugable target inhibition efficacy of phytochemicals from Indian medicinal plants using molecular docking, molecular dynamics (MD) simulation, and MM-PBSA analysis. A total of 130 phytochemicals were screened against SARS-CoV-2 Spike (S)-protein, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). Result of molecular docking showed that Isoquercetin potentially binds with the active site/protein binding site of the Spike, RdRP, and Mpro targets with a docking score of -8.22, -6.86, and -9.73 kcal/mole, respectively. Further, MS�3, 7-Hydroxyaloin B, 10-Hydroxyaloin A, showed -9.57, -7.07, -8.57 kcal/mole docking score against Spike, RdRP, and Mpro targets respectively. The MD simulation was performed to study the favorable confirmation and energetically stable complex formation ability of Isoquercetin and 10-Hydroxyaloin A phytochemicals in Mpro-unbound/ligand bound/standard inhibitor bound system. The parameters such as RMSD, RMSF, Rg, SASA, Hydrogen-bond formation, energy landscape, principal component analysis showed that the lead phytochemicals form stable and energetically stabilized complex with the target protein. Further, MM-PBSA analysis was performed to compare the Gibbs free energy of the Mpro-ligand bound and standard inhibitor bound complexes. The analysis revealed that the His-41, Cys145, Met49, and Leu27 amino acid residues were majorly responsible for the lower free energy of the complex. Drug likeness and physiochemical properties of the test compounds showed satisfactory results. Taken together, the study concludes that that the Isoquercetin and 10-Hydroxyaloin A phytochemical possess significant efficacy to bind SARS-Cov-2 Mpro active site. The study necessitates further in vitro and in vivo experimental validation of these lead phytochemicals to assess their anti-SARS-CoV-2 potential. � Copyright � 2021 Kushwaha, Singh, Bansal, Yadav, Prajapati, Shuaib and Kumar.Item Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study(Academic Press, 2021-05-24T00:00:00) Kushwaha, Prem Prakash; Singh, Atul Kumar; Prajapati, Kumari Sunita; Shuaib, Mohd; Gupta, Sanjay; Kumar, ShashankCoronaviruses are deadly and contagious pathogens that affects people in different ways. Researchers have increased their efforts in the development of antiviral agents against coronavirus targeting Mpro protein (main protease) as an effective drug target. The present study explores the inhibitory potential of characteristic and non-characteristic Withania somnifera (Indian ginseng) phytochemicals (n ? 100) against SARS-Cov-2 Mpro protein. Molecular docking studies revealed that certain W. somnifera compounds exhibit superior binding potential (?6.16 to ?12.27 kcal/mol) compared to the standard inhibitors (?2.55 to ?6.16 kcal/mol) including nelfinavir and lopinavir. The non-characteristic compounds (quercetin-3-rutinoside-7-glucoside, rutin and isochlorogenic acid B) exhibited higher inhibitory potential in comparison to characteristic W. somnifera compounds withanolide and withanone. Molecular dynamics (MD) simulation studies of the complex for 100 ns confirm favorable and stable binding of the lead molecule. The MMPBSA calculation of the last 10 ns of the protein-ligand complex trajectory exhibited stable binding of quercetin-3-rutinoside-7-glucoside at the active site of SARS-Cov-2 Mpro. Taken together, the study demonstrates that the non-characteristic compounds present in W. somnifera possess enhanced potential to bind SARS-Cov-2 Mpro active site. We further recommend in vitro and in vivo experimentation to validate the anti-SARS-CoV-2 potential of these lead molecules. � 2021 Elsevier LtdItem Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study(Elsevier Ltd, 2020-12-19T00:00:00) Singh, Atul Kumar; Kushwaha, Prem Prakash; Prajapati, Kumari Sunita; Shuaib, Mohd; Gupta, Sanjay; Kumar, ShashankCoronaviruses are known to infect respiratory tract and intestine. These viruses possess highly conserved viral macro domain A1pp having adenosine diphosphate (ADP)-ribose binding and phosphatase activity sites. A1pp inhibits adenosine diphosphate (ADP)-ribosylation in the host and promotes viral infection and pathogenesis. We performed in silico screening of FDA approved drugs and nucleoside analogue library against the recently reported crystal structure of SARS-CoV-2 A1pp domain. Docking scores and interaction profile analyses exhibited strong binding affinity of eleven FDA approved drugs and five nucleoside analogues NA1 (?13.84), nadide (?13.65), citicholine (?13.54), NA2 (?12.42), and NA3 (?12.27). The lead compound NA1 exhibited significant hydrogen bonding and hydrophobic interaction at the natural substrate binding site. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface (SASA), hydrogen bond formation, principle component analysis, and free energy landscape calculations for NA1 bound protein displayed stable complex formation in 100 ns molecular dynamics simulation, compared to unbound macro domain and natural substrate adenosine-5-diphosphoribose bound macro domain that served as a positive control. The molecular mechanics Poisson�Boltzmann surface area analysis of NA1 demonstrated binding free energy of ?175.978 � 0.401 kJ/mol in comparison to natural substrate which had binding free energy of ?133.403 � 14.103 kJ/mol. In silico analysis by modelling tool ADMET and prediction of biological activity of these compounds further validated them as putative therapeutic molecules against SARS-CoV-2. Taken together, this study offers NA1 as a lead SARS-CoV-2 A1pp domain inhibitor for future testing and development as therapeutics against human coronavirus. � 2020Item Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies(Taylor and Francis Ltd., 2020) Gupta, S; Singh, A.K; Kushwaha, P.P; Prajapati, K.S; Shuaib, M; Senapati, S; Kumar, S.Coronaviruses are contagious pathogens primarily responsible for respiratory and intestinal infections. Research efforts to develop antiviral agents against coronavirus demonstrated the main protease (Mpro) protein may represent effective drug target. X-ray crystallographic structure of the SARS-CoV2 Mpro protein demonstrated the significance of Glu166, Cys141, and His41 residues involved in protein dimerization and its catalytic function. We performed in silico screening of compounds from Curcuma longa L. (Zingiberaceae family) against Mpro protein inhibition. Employing a combination of molecular docking, scoring functions, and molecular dynamics simulations, 267 compounds were screened by docking on Mpro crystallographic structure. Docking score and interaction profile analysis exhibited strong binding on the Mpro catalytic domain with compounds C1 (1E,6E)-1,2,6,7-tetrahydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione) and C2 (4Z,6E)?1,5?dihydroxy?1,7?bis(4?hydroxyphenyl)hepta?4,6?dien?3?one as lead agents. Compound C1 and C2 showed minimum binding score (�9.08 and �8.07 kcal/mole) against Mpro protein in comparison to shikonin and lopinavir (? ?5.4 kcal/mole) a standard Mpro inhibitor. Furthermore, principal component analysis, free energy landscape and protein-ligand energy calculation studies revealed that these two compounds strongly bind to the catalytic core of the Mpro protein with higher efficacy than lopinavir, a standard antiretroviral of the protease inhibitor class. Taken together, this structure based optimization has provided lead on two natural Mpro inhibitors for further testing and development as therapeutics against human coronavirus. Communicated by Ramaswamy H. Sarma. � 2020, � 2020 Informa UK Limited, trading as Taylor & Francis Group.