Biochemistry And Microbial Sciences - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/27
Browse
3 results
Search Results
Item Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity(Springer Science and Business Media Deutschland GmbH, 2023-09-04T00:00:00) Rana, Harvesh Kumar; Singh, Amit Kumar; Kumar, Ramesh; Pandey, Abhay K.Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium�s genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants�have been described and their mechanisms discussed. � 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Current therapeutic modalities and chemopreventive role of natural products in liver cancer: Progress and promise(Baishideng Publishing Group Inc, 2023-01-15T00:00:00) Singh, Amit Kumar; Singh, Shiv Vardan; Kumar, Ramesh; Kumar, Shashank; Senapati, Sabyasachi; Pandey, Abhay KLiver cancer is a severe concern for public health officials since the clinical cases are increasing each year, with an estimated 5-year survival rate of 30%�35% after diagnosis. Hepatocellular carcinoma (HCC) constitutes a significant subtype of liver cancer (approximate75%) and is considered primary liver cancer. Treatment for liver cancer mainly depends on the stage of its progression, where surgery including, hepatectomy and liver transplantation, and ablation and radiotherapy are the prime choice. For advanced liver cancer, various drugs and immunotherapy are used as first-line treatment, whereas second-line treatment includes chemotherapeutic drugs from natural and synthetic origins. Sorafenib and lenvatinib are first-line therapies, while regorafenib and ramucirumab are secondline therapy. Various metabolic and signaling pathways such as Notch, JAK/ STAT, Hippo, TGF-?, and Wnt have played a critical role during HCC progression. Dysbiosis has also been implicated in liver cancer. Drug-induced toxicity is a key obstacle in the treatment of liver cancer, necessitating the development of effective and safe medications, with natural compounds such as resveratrol, curcumin, diallyl sulfide, and others emerging as promising anticancer agents. This review highlights the current status of liver cancer research, signaling pathways, therapeutic targets, current treatment strategies and the chemopreventive role of various natural products in managing liver cancer � The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reservedItem Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells(Elsevier Inc., 2019) Kushwaha P.P.; Vardhan P.S.; Kapewangolo P.; Shuaib M.; Prajapati S.K.; Singh A.K.; Kumar S.Breast cancer (BCa) is the most commonly diagnosed lethal cancer in women worldwide. Notch signaling pathway is directly linked to BCa recurrence and aggressiveness. Natural remedies are becoming a prime choice to overcome against cancer due to lesser side effect and cost-effectiveness. Bulbine frutescens (Asphodelaceae), a traditional medicinal plant in South Africa possess bioactive flavonoids and terpenoids. Polar (methanol) and non-polar (hexane) B. frutescens plant extracts were prepared. GC–MS analysis revealed the differential presence of secondary metabolites in both methanolic and hexane extracts. We hereby first time evaluated the anticancer potential of B. frutescens methanolic and hexane extract in triple-negative and luminal BCa cells. B. frutescens extracts significantly decreased cell viability (IC50 4.8–28.4 μg/ml) and induced cell cycle arrest at G1 phase in MDA-MB-231 and T47D cells as confirmed by spectrophotometry and flow cytometry technique. RT-PCR analysis of cell cycle (cyclin D1, CDK4, and p21) and apoptosis modulating genes (caspase 3, Bcl2 and survivin) revealed upexpression of p21, and caspase 3, and down expression of cyclin D1, CDK4, Bcl2 and survivin genes in extract-treated BCa cells. Fluorescence spectrophotometry and confocal microscopy showed B. frutescens induced nuclear morphology and mitochondrial integrity disruption, and increased reactive oxygen species production in MDA-MB-231 and T47D cells. Flow cytometric apoptosis analysis of B. frutescens extracts treated MDA-MB-231 cells showed ≈13% increase in early apoptotic population in comparison to non-treated cells. Dual-Luciferase Reporter assay confirmed notch promoter inhibitory activity of B. frutescens extracts. Moreover, RTPCR analysis showed down regulation of notch responsive genes (Hes1 and Hey1) at transcription levels in extract-treated BCa cells. Western Blot analysis showed increased procaspase 3 protein expression in extract-treated BCa cells. In all the assays methanolic extract showed better anti-cancer properties. Literature-based identification of methanol soluble phytochemicals in B. frutescens and in silico docking study revealed Bulbineloneside D as a potent ϒ-secretase enzyme inhibitor. In comparison to standard notch inhibitor, lead phytochemical showed two additional hydrophobic interactions with Ala80 and Leu81 amino acids. In conclusion, B. frutescens phytochemicals have cell cycle arrest, ROS production, apoptosis induction, and mitochondria membrane potential disruption efficacy in breast cancer cells. B. frutescens phytochemicals have the ability to downregulate the notch signaling pathway in triple-negative and luminal breast cancer cells.