Computational Sciences - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/42
Browse
2 results
Search Results
Item Discovery of plant-based phytochemical�as effective antivirals that target the non-structural protein C of the Nipah virus through computational methods(Taylor and Francis Ltd., 2023-05-24T00:00:00) Sureshan, Muthusamy; Prabhu, Dhamodharan; Joshua, Sharon Nissi; Sasikumar, Shruti Vardhini; Rajamanikandan, Sundarraj; Govindhapriya, Muthukumar; Umadevi, Venkatachalam; Kadhirvel, SarabojiNipah Virus (NiV) belongs to the Paramyxoviridae family and was first identified during an outbreak in Malaysia. Some initial symptoms include mild fever, headache and sore throat, which could escalate to respiratory illness and brain inflammation. The mortality rate of NiV infection can range from 40% to 75%, which is quite high. This is mainly due to the lack of efficient drugs and vaccines. In most instances, NiV is transmitted from animals to humans. Non-Structural Proteins (C, V and W) of the Nipah virus impede the host immune response by obstructive the JAK/STAT pathway. However, Non-Structural Proteins�C (NSP-C) plays a vital role in NiV pathogenesis, which includes IFN antagonist activity and viral RNA production. In the present study, the full-length structure of NiV-NSP-C was predicted using computational modelling, and the stability of the structure was analysed using 200 ns molecular dynamic (MD) simulation. Further, the structure-based virtual screening identified five potent phytochemicals (PubChem CID: 9896047, 5885, 117678, 14887603 and 5461026) with better binding affinity against NiV-NSP-C. DFT studies clearly showed that the phytochemicals had higher chemical reactivity, and the complex MD simulation depicted that the identified inhibitors exhibited stable binding with NiV-NSP-C. Furthermore, experimental validation of these identified phytochemicals would likely control the infection of NiV. Communicated by Ramaswamy H. Sarma. � 2023 Informa UK Limited, trading as Taylor & Francis Group.Item Discovery of potent inhibitors targeting Glutathione S-transferase of Wuchereria bancrofti: a step toward the development of effective anti-filariasis drugs(Institute for Ionics, 2023-02-16T00:00:00) Sureshan, Muthusamy; Prabhu, Dhamodharan; Rajamanikandan, Sundarraj; Saraboji, KadhirvelLymphatic filariasis (LF) is one of the major health problems for the human kind in developing countries including India. LF is caused by three major nematodes namely Wuchereria bancrofti, Brugia malayi, and Brugia timori. The recent statistics of World Health Organization (WHO) showed that 51 million people were affected and 863 million people from 47 countries around worldwide remain threatened by LF. Among them, 90% of the filarial infection was caused by the nematode W. bancrofti. Approved drugs were available for the treatment of LF but many of them developed drug resistance and no longer effective in all stages of the infection. In the current research work, we explored the Glutathione S-transferase (GST) of W. bancrofti, the key enzyme responsible for detoxification that catalyzes the conjugation of reduced GSH (glutathione) to xenobiotic compounds. Initially, we analyzed the stability of the WbGST through 200 ns MD simulation and further structure-based virtual screening approach was applied by targeting the substrate binding site to identify the potential leads from small molecule collection. The in silico ADMET profiles for the top-ranked hits were predicted and the predicted non-toxic lead molecules showed the highest docking score in the range of ?�12.72 kcal/mol to ?�11.97 kcal/mol. The cross docking of the identified hits with human GST revealed the potential binding specificity of the hits toward WbGST. Through WbGST�lead complex simulation, the lead molecules were observed to be stable and also intactly bound within the binding site of WbGST. Based on the computational results, the five predicted non-toxic molecules were selected for the in vitro assay. The molecules showed significant percentage of inhibition against the filarial worm Setaria digitata which is the commonly used model organism to evaluate the filarial activity. In addition, the molecules also showed better IC50 than the standard drug ivermectin. The identified lead molecules will lay a significant insight for the development of new drugs with higher specificity and lesser toxicity to control and treat filarial infections. Graphical abstract: [Figure not available: see fulltext.] � 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.