Chemistry - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/37
Browse
3 results
Search Results
Item Vanadate Encapsulated Polyoxoborate Framework with [V12B18] Clusters: An Efficient Bifunctional Electrocatalyst for Oxygen and Hydrogen Evolution Reactions(American Chemical Society, 2022-07-11T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Saha, Uttam; Rayaprol, Sudhindra; Paul, Avijit KumarWidespread contemporary attention has grown over the years in the search for a new functional and robust inorganic framework system with the advent of exciting applications. Herein, a facile strategy has been demonstrated for developing noble-metal-free bifunctional electrocatalysts by successfully preparing a polyoxovanadoborate framework compound, i.e., [Na10(H2O)18][(VO)12(?3-OH)6(B3O7)6]�5H2O, i.e., NVBO-I. Anionic vanadoborate clusters are interconnected through a cationic sodium aquated chain to form a three-dimensional framework structure. The compound exhibits remarkable bifunctional activity for oxygen and hydrogen evolution reactions over many well-engineered and state-of-art electrocatalysts under a similar catalytic environment. � 2022 American Chemical Society.Item Genomic DNA-mediated formation of a porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape bifunctional electrocatalyst for water splitting reactions(Royal Society of Chemistry, 2022-01-28T00:00:00) Singh, Harjinder; Ahmed, Imtiaz; Biswas, Rathindranath; Mete, Shouvik; Halder, Krishna Kamal; Banerjee, Biplab; Haldar, Krishna KantaAmong the accessible techniques, the production of hydrogen by electrocatalytic water oxidation is the most established process, which comprises oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we synthesized a genomic DNA-guided porous Cu2(OH)PO4/Co3(PO4)2�8H2O rolling pin shape composite structure in one pot. The nucleation and development of the porous rolling pin shape Cu2(OH)PO4/Co3(PO4)2�8H2O composite was controlled and stabilized by the DNA biomolecules. This porous rolling pin shape composite was explored towards electrocatalytic water oxidation for both OER and HER as a bi-functional catalyst. The as-prepared catalyst exhibited a very high OER and HER activity compared to its various counterparts in the absence of an external binder (such as Nafion). The synergistic effects between Cu and Co metals together with the porous structure of the composite greatly helped in enhancing the catalytic activity. These outcomes undoubtedly demonstrated the beneficial utilization of the genomic DNA-stabilised porous electrocatalyst for OER and HER, which has never been observed. This journal is � The Royal Society of Chemistry.Item Charge Separated One-Dimensional Hybrid Cobalt/Nickel Phosphonate Frameworks: A Facile Approach to Design Bifunctional Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions(American Chemical Society, 2021-09-30T00:00:00) Rom, Tanmay; Biswas, Rathindranath; Haldar, Krishna Kanta; Sarkar, Sourav; Saha, Uttam; Paul, Avijit KumarTwo new organoamine templated one-dimensional transition metal phosphonate compounds are synthesized, and their bifunctional electrocatalytic activities are examined in highly alkaline and acidic media. Compared with state-of-the-art materials, the cobalt phosphonate system is a new fabrication of sustainable and highly efficient catalysts toward electrochemical water splitting systems. � 2021 American Chemical Society. All rights reserved.