Chemistry - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/37

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    Single-molecule analysis of osmolyte-mediated nanomechanical unfolding behavior of a protein domain
    (Elsevier B.V., 2023-09-16T00:00:00) Bajaj, Manish; Muddassir, Mohd; Choi, Bumjoon; Singh, Priyanka; Park, Jong Bum; Singh, Surjeet; Yadav, Manisha; Kumar, Rajesh; Eom, Kilho; Sharma, Deepak
    The small organic molecules, known as osmolytes being ubiquitously present in different cell types, affect protein folding, stability and aggregation. However, it is unknown how the osmolytes affect the nanomechanical unfolding behavior of protein domain. Here, we show the osmolyte-dependent mechanical unfolding properties of protein titin immunoglobulin-27 (I27) domain using an atomic force microscopy (AFM)-based single-molecule force spectroscopy. We found that amines and methylamines improved the mechanical stability of I27 domain, whereas polyols had no effect. Interestingly, glycine betaine (GB) or trimethylamine-N-oxide (TMAO) increased the average unfolding force of the protein domain. The kinetic parameters analyzed at single-molecule level reveal that stabilizing effect of osmolytes is due to a decrease in the unfolding rate constant of I27, which was confirmed by molecular dynamics simulations. Our study reveals different effects that diverse osmolytes have on the mechanical properties of the protein, and suggests the potential use of osmolytes in modulating the mechanical stability of proteins required for various nano-biotechnological applications. � 2023 Elsevier B.V.
  • Item
    Substitution of carbonate by non-physiological synergistic anion modulates the stability and iron release kinetics of serum transferrin
    (Elsevier B.V., 2022-10-15T00:00:00) Kumar, Rajesh; Sharma, Deepak; Kumar, Navinder; Kumari, Beeta; Shabnam; Kumar, Sanjeev
    Serum transferrin (sTf) is a bi-lobal protein. Each lobe of sTf binds one Fe3+ ion in the presence of a synergistic anion. Physiologically, carbonate is the main synergistic anion but other anions such as oxalate, malonate, glycolate, maleate, glycine, etc. can substitute for carbonate in vitro. The present work provides the possible pathways by which the substitution of carbonate with oxalate affects the structural, kinetic, thermodynamic, and functional properties of blood plasma sTf. Analysis of equilibrium experiments measuring iron release and structural unfolding of carbonate and oxalate bound diferric-sTf (Fe2sTf) as a function of pH, urea concentration, and temperature reveal that the structural and iron-centers stability of Fe2sTf increase by substitution of carbonate with oxalate. Analysis of isothermal titration calorimetry (ITC) scans showed that the affinity of Fe3+ with apo-sTf is enhanced by substituting carbonate with oxalate. Analysis of kinetic and thermodynamic parameters measured for the iron release from the carbonate and oxalate bound monoferric-N-lobe of sTf (FeNsTf) and Fe2sTf at pH 7.4 and pH 5.6 reveals that the substitution of carbonate with oxalate inhibits/retards the iron release via increasing the enthalpic barriers. � 2022 Elsevier B.V.
  • Item
    Analysis of the effect of 1-Allyl-3-Methylimidazolium chloride on thermodynamic stability, folding kinetics, and motional dynamics of horse cytochrome c
    (Elsevier B.V., 2022-09-08T00:00:00) Garg, Mansi; Sharma, Deepak; Kumar, Rajesh
    1-allyl-3-methylimidazolium chloride (AMIMCl) acts as a potential green solvent for proteins. The present work provides a possible pathway by which the structural, kinetic, thermodynamic, and folding properties of horse cytochrome c (cyt c) are affected in green aqueous-AMIMCl systems. Analysis of the effect of AMIMCl on thermodynamic stability, refolding/unfolding kinetics, and motional dynamics of cyt c provided important information, (i) AMIMCl decreases the thermodynamic stability of reduced cyt c and also strengthens the guanidinium chloride (GdmCl)-mediated decrease in thermodynamic stability of protein, (ii) AMIMCl reduces the thermal-fluctuation of Met80-containing omega-loop of natively-folded compact state of carbonmonoxycytochrome c (MCO-state) due to polyfunctional interactions between the AMIM+ and different groups of protein, (iii) AMIMCl shifts the kinetic chevron plot, ln kobs[sbnd][GdmCl] to the lower concentration of GdmCl, (iv) AMIMCl shifts the refolding and unfolding limps to vertically downwards and upwards, respectively, and (v) AMIMCl reducing the unfolding free energy estimated by both thermodynamic and kinetic analysis. � 2022
  • Thumbnail Image
    Item
    Single-molecule force-unfolding of titin I27 reveals a correlation between the size of the surrounding anions and its mechanical stability
    (Royal Societty of chemistry, 2018) Muddassir, Mohd; Manna, Bharat; Singh, Priyanka; Singh, Surjeet; Kumar,Rajesh; Ghosh, Amit; Sharma, Deepak
    Each cellular protein is surrounded by a biochemical milieu that affects its stability and the associated function. The role of this surrounding milieu in the proteins’ mechanical stability remains largely unexplored. Herein, we report an as yet unknown correlation between the size of the surrounding anions and the mechanical stability of a protein. Using single-molecule force spectroscopy of the 27th domain (I27) of human cardiac muscle protein titin, we show that the average unfolding force of the protein decreases with increase in the ionic radii of the surrounding anions in the order Cl− > Br− > NO3− > I− > SO42− ≈ ClO4−, indicating an inverse correlation between anion size and the mechanical stability of I27. The destabilizing effect was attributed to the combined effect of increase in the unfolding rate constant and unfolding distance upon incubation with the anion. These findings reveal that anion size can significantly affect the mechanical resistance of proteins and thus could be a convenient and promising tool for regulating the mechanical stability of proteins.
  • Thumbnail Image
    Item
    Role of Macromolecular Crowding on Stability and Iron Release Kinetics of Serum Transferrin
    (American Chemical Society, 2017) Kumar, Sandeep; Sharma, Deepak; Kumar, Rajesh
    The macromolecular crowding influences the structural stability and functional properties of transferrin (Tf). The equilibrium as well as kinetic studies of Tf at different concentrations of crowding agents (dextran 40, dextran 70, and ficoll 70) and at a fixed concentration of dextran 40 under different concentrations of NaCl at pH 7.4 and 5.6 (?1) revealed that (i) the crowder environment increases the diferric-Tf (Fe2Tf) stability against iron loss and overall denaturation of the protein, (ii) both in the absence and presence of crowder, the presence of salt promotes the loss of iron and overall denaturation of Fe2Tf which is due to ionic screening of electrostatic interactions, (iii) the crowder environment retards iron release from monoferric N-lobe of Tf (FeNTf) by increasing enthalpic barrier, (iv) the retardation of iron release by crowding is enthalpically dominated than the entropic one, (v) both in the absence and presence of crowder, the presence of salt accelerates the iron release from FeNTf due to ionic screening of electrostatic interactions and anion binding to KISAB sites, and (vi) the crowders environment is unable to diminish (a) the salt-induced destabilization of Fe2Tf against the loss of iron and overall denaturation and (b) the anion effect and ionic screening of diffusive counterions responsible to promote iron release from FeNTf. ? 2017 American Chemical Society.