Chemistry - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/37

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    Ag-S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction
    (American Chemical Society, 2023-04-06T00:00:00) Meena, Sangeeta; Dastider, Saptarshi G.; Nishad, Chandra Shekhar; Jangid, Dilip Kumar; Kumar, Pankaj; Khirid, Samreet; Bose, Shubhankar Kumar; Mondal, Krishnakanta; Banerjee, Biplab; Dhayal, Rajendra S.
    The preparation of high-nuclearity silver nanoclusters in quantitative yield remains exclusive and their potential applications in the catalysis of organic reactions are still undeveloped. Here, we have synthesized a quantum dot (QD)-based catalyst, [Ag62S13(SBut)32](PF6)4 (denoted as Ag62S12-S) in excellent yield that enables the direct synthesis of pharmaceutically precious 3,4-dihydroquinolinone in 92% via a decarboxylative radical cascade reaction of cinnamamide with ?-oxocarboxylic acid under mild reaction conditions. In comparison, a superatom [Ag62S12(SBut)32](PF6)2 (denoted as Ag62S12) with identical surface anatomy and size, but without a central S2- atom in the core, gives an improved yield (95%) in a short time and exhibits higher reactivity. Multiple characterization techniques (single-crystal X-ray diffraction, nuclear magnetic resonance (1H and 31P), electrospray ionization mass spectrometry, energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller (BET), Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis) confirm the formation of Ag62S12-S. The BET results expose the total active surface area in supporting a single e- transfer reaction mechanism. Density functional theory reveals that leaving the central S atom of Ag62S12-S leads to higher charge transfer from Ag62S12 to the reactant, accelerates the decarboxylation process, and correlates the catalytic properties with the structure of the nanocatalyst. � 2023 American Chemical Society.
  • Item
    Direct Michael addition/decarboxylation reaction catalyzed by a composite of copper ferrite nanoparticles immobilized on microcrystalline cellulose: an eco-friendly approach for constructing 3,4-dihydrocoumarin frameworks
    (Royal Society of Chemistry, 2022-10-27T00:00:00) Kumar, Bhupender; Borah, Biplob; Babu, J. Nagendra; Chowhan, L. Raju
    A composite of copper ferrite oxide nanoparticles immobilized on microcrystalline cellulose (CuFe2O4@MCC) was synthesized. The synthesized composite was characterized by FESEM with EDS-Mapping, TEM, P-XRD, TEM, and BET analysis and investigated for its catalytic activity toward Tandem Michael addition and decarboxylation of coumarin-3-carboxylic acid with cyclic 1,3-diketones to obtain novel 3,4-dihydrocoumarin derivatives. This protocol was established with wide substrate scope and significant yield. The significant characteristics of this methodology are mild reaction conditions, easy setup procedure, non-toxic, and cost-effectiveness. A gram-scale synthesis with low catalyst loading was also demonstrated. � 2022 The Royal Society of Chemistry.