Mathematics And Statistics - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/47

Browse

Search Results

Now showing 1 - 2 of 2
  • Item
    A Novel Bivariate Generalized Weibull Distribution with Properties and Applications
    (Taylor and Francis Ltd., 2023-09-09T00:00:00) Pathak, Ashok Kumar; Arshad, Mohd; J. Azhad, Qazi; Khetan, Mukti; Pandey, Arvind
    Univariate Weibull distribution is a well known lifetime distribution and has been widely used in reliability and survival analysis. In this paper, we introduce a new family of bivariate generalized Weibull (BGW) distributions, whose univariate marginals are exponentiated Weibull distribution. Different statistical quantiles like marginals, conditional distribution, conditional expectation, product moments, correlation and a measure component reliability are derived. Various measures of dependence and statistical properties along with aging properties are examined. Further, the copula associated with BGW distribution and its various important properties are also considered. The methods of maximum likelihood and Bayesian estimation are employed to estimate unknown parameters of the model. A Monte Carlo simulation and real data study are carried out to demonstrate the performance of the estimators and results have proven the effectiveness of the distribution in real-life situations. � 2023 Taylor & Francis Group, LLC.
  • Item
    A Bivariate Teissier Distribution: Properties, Bayes Estimation and Application
    (Springer, 2023-08-29T00:00:00) Sharma, Vikas Kumar; Singh, Sudhanshu Vikram; Pathak, Ashok Kumar
    This article presents a bivariate extension of the Teissier distribution, whose univariate marginal distributions belong to the exponentiated Teissier family. Analytic expressions for the different statistical quantities such as conditional distribution, joint moments, and quantile function are explicitly derived. For the proposed distribution, the concepts of reliability and dependence measures are also explored in details. Both the maximum likelihood technique and the Bayesian approach are utilised in the process of parameter estimation for the proposed distribution with unknown parameters. Several numerical experiments are reported to study the performance of the classical and Bayes estimators for varying sample size. Finally, a bivariate data is fitted using the proposed distribution to show its applicability over the bivariate exponential, Rayleigh, and linear exponential distributions in real-life situations. � 2023, Indian Statistical Institute.