Zoology - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/66
Browse
2 results
Search Results
Item Pseudomonas aeruginosa quorum sensing molecule N-3-oxo-dodecanoyl-Lhomoserine lactone activates human platelets through intracellular calciummediated ROS generation(Elsevier, 2018) Yadav, V. K.; Singh, P. K.; Kalia, M.; Sharma, D.; Singh, S. K.; Agarwal, V.Pseudomonas aeruginosa, an opportunistic pathogen release N-3-oxo-dodecanoyl-l-homoserine lactone (3-oxo-C12HSL) and N-butyryl-l-homoserine lactone (C4-HSL) quorum sensing (QS) molecules to regulate various virulence factors responsible for infection in the host. 3-oxo-C12 HSL not only regulates the bacterial gene expression but also modulates the host cell system. Thus, it is pertinent to evaluate the effect of these QS molecules on blood platelets which is responsible for the maintenance of hemostasis and thrombus formation. Here, in the present study, we showed that 3-oxo-C12 HSL activates platelets in a dose-dependent manner and induces intracellular calcium-mediated reactive oxygen species (ROS) release, whereas no such effect was observed with C4-HSL. 3-oxo-C12 HSL stimulated ROS release was mediated by NADPH oxidase. Results confirmed the involvement of phospholipase C (PLC) and IP3 receptor behind intracellular calcium-mediated ROS generation. The impact of 3-oxo-C12 HSL on platelet activation suggests that it could interfere and alter the normal function of platelet in individuals infected with P. aeruginosa.Item APE1: A Molecule of Focus with Neuroprotective and Anti-Cancer Properties(OMICS Publishing Group, 2013) Mantha, Anil K.Apurinic/Apyrimidinic endonuclease (APE1) is a multi-functional, central enzyme of base excision repair (BER) pathway that takes care of oxidized base damage (AP sites and strand breaks) caused by both endogenous and exogenous oxidative DNA damaging agents. In repair function, APE1 exhibits majorly abasic (AP) endonuclease activity and stable interaction(s) with BER-pathway participant proteins. Second function of APE1 is redox activation of various transcription factors (TFs e.g., c-jun, NF-kB, p53 and HIF1α) and also named as redox effector factor 1(Ref-1). In redox function, APE1 reductively activates TFs involved in regulation of gene expression for cell survival mechanisms through stable pair-wise interaction(s). Recent studies have indicated that APE1 also possesses other distinct functions such as RNA metabolism, riboendonuclease activity and protein-protein interaction for maintaining cellular homeostasis. Altered APE1 expression has been reported in various cancers and neurodegenerative diseases. Taken together such findings advocates the necessity to delineate the underlying molecular mechanism(s) for understanding its role in various biological functions, that could be translated to its application in therapeutics against human diseases like cancer, neurodegenerative diseases and other pathologies such as cardiovascular diseases.