Physics - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/61
Browse
2 results
Search Results
Item First principles study of 2D ring-Te and its electrical contact with a topological Dirac semimetal(Royal Society of Chemistry, 2023-02-10T00:00:00) Singh, Jaspreet; Kumar, AshokIn recent years, researchers have manifested their interest in two-dimensional (2D) mono-elemental materials of group-VI elements because of their excellent optoelectronic, photovoltaic and thermoelectric properties. Despite the intensive recent research efforts, there is still a possibility of novel 2D allotropes of these elements due to their multivalency nature. Here, we have predicted a novel 2D allotrope of tellurium (ring-Te) using density functional theory. Its stability is confirmed by phonon and ab initio molecular dynamics simulations. Ring-Te has an indirect band gap of 0.69 eV (1.16 eV) at the PBE (HSE06) level of theories and undergoes an indirect-direct band gap transition under tensile strain. The higher carrier mobility of holes (?103 cm2 V?1 s?1), good UV-visible light absorption ability and low exciton binding (?0.35 eV) of ring-Te give rise to its potential applications in optoelectronic devices. Furthermore, the electrical contact of ring-Te with a topological Dirac semimetal (sq-Te) under the influence of an electric field shows that the Schottky barriers and contact types can undergo transition from p-type to n-type Schottky contact and then to ohmic contact at a higher electric field. Our study provides an insight into the physics of designing high-performance electrical coupled devices composed of 2D semiconductors and topological semimetals. � 2023 The Royal Society of Chemistry.Item Design and development of a compact ion implanter and plasma diagnosis facility based on a 2.45 GHz microwave ion source(American Institute of Physics Inc., 2021-05-25T00:00:00) Swaroop, Ram; Kumar, Narender; Rodrigues, G.; Kanjilal, D.; Banerjee, I.; Mahapatra, S.K.A project on developing a 2.45 GHz microwave ion source based compact ion implanter and plasma diagnostic facility has been taken up by the Central University of Punjab, Bathinda. It consists of a double-wall ECR plasma cavity, a four-step ridge waveguide, an extraction system, and an experimental beam chamber. The mechanical design has been carried out in such a way that both types of experiments, plasma diagnosis and ion implantation, can be easily accommodated simultaneously and separately. To optimize microwave coupling to the ECR plasma cavity, a four-step ridge waveguide is designed. Microwave coupling simulation for the ECR plasma cavity has been performed at different power inputs using COMSOL Multiphysics. An enhanced electric field profile has been obtained at the center of the ECR plasma cavity with the help of a four-step ridge waveguide compared to the WR284 waveguide. The magnetic field distribution for two magnetic rings and the extraction system's focusing properties have been simulated using the computer simulation technique. A tunable axial magnetic field profile has been obtained with a two permanent magnetic ring arrangement. The dependency of the beam emittance and beam current on accelerating voltages up to 50 kV has been simulated with different ions. It shows that ion masses have a great impact on the beam emittance and output current. This facility has provision for in situ plasma diagnosis using a Langmuir probe and optical emission spectroscopy setups. This system will be used for ion implantation, surface patterning, and studies of basic plasma sciences. � 2021 Author(s).
