Physics - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/61
Browse
3 results
Search Results
Item Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte(Institute of Physics Publishing, 2018) Arya, A.; Sharma, A.L.In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+ x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times () have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation () was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole-Cole plot () in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed. ? 2018 IOP Publishing Ltd.Item Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application(Elsevier B.V., 2017) Kamble, D.B.; Sharma, A.K.; Yadav, J.B.; Patil, V.B.; Devan, R.S.; Jatratkar, A.A.; Yewale, M.A.; Ganbavle, V.V.; Pawar, S.D.Interconnected nanofibrous polythiophene (INPTh) film was deposited on the glass substrate through a simple chemical bath deposition method. The influence of monomer concentration on INPTh film properties as well as on NO2sensing properties of the film was studied. The morphological and structural studies were carried out using FTIR spectroscopy, FE-SEM microscope, and AFM analysis. The FTIR spectra confirmed the formation of PTH structure. The interconnected nanofibrous surface morphology was observed in FE-SEM images. The roughness of the film and thickness (225?nm?442?nm) was found to increase with monomer concentration up to 0.5?M, after that, both decreased at 0.6?M monomer concentration. The highest selectivity of PTh thin film towards NO2was observed than the other gases like H2S, SO2, NH3, CO and LPG. The influence of film morphology and thickness on gas sensing properties was observed, which was varied with monomer concentration. The film deposited at 0.5?M monomer concentration showed the highest NO2gas response of 47.58% at room temperature. Present results revealed that monomer concentration was also one of the deposition parameters for tuning the morphological as well as gas sensing properties of the chemical bath deposited PTh film. ? 2017 Elsevier B.V.Item Correlation of microscopic interaction with electrical conductivity in polymer separator of energy storage devices(Springer Science and Business Media, LLC, 2017) Sharma, Parul Kumar; Sharma, Anshul Kumar; Sadiq, M.; Sharma, A. L.In the present report solid polymer nanocomposite (PNCs) comprising of (PEO)14+ NaClO4+ wt% BaTiO3has been prepared by solution casting method. Important characterization like: FTIR (Fourier Transform Infrared Spectroscopy), and conductivity have been performed for the applicability of the prepared materials in device application. The highest conductivity of the prepared polymer nanocomposite materials has been estimated 1?10?4Scm?1for 15 wt% of BaTiO3. A very fine correlation has been built among polymer-ion, ion-ion and polymer ion interaction with obtained conductivity results. ? Springer International Publishing Switzerland 2017.