Botany - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/32

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Transcriptome Analysis Revealed Behavior Complexity of Senescence Responses in Himalayan Tree Species Ulmus wallichiana
    (Springer, 2023-05-17T00:00:00) Singh, Amandeep; Majeed, Aasim; Sharma, Vikas; Gadri, Hari Shankar; Chowdhary, Md. Asif; Bhardwaj, Pankaj
    The Himalayas present a highly contrasting environment for the organisms that inhabit it, with summer and winter being the most disparate seasons. As winter approaches, the temperature drops, and deciduous plants, such as Ulmus wallichiana Planch., undergo senescence. In this study, we used the RNA-seq approach to generate a de novo transcriptome assembly of U. wallichiana, consisting of 300,067 unigenes. We investigated the differential expression pattern of these unigenes under changing climatic conditions, with a focus on the contrast between winter and summer. We observed that 2746 unigenes were differentially expressed, with a fold change of ? 2 and an FDR-adjusted p-value of ? 0.001. Among these unigenes, 37 were found to be related to senescence. We also identified nine DREB unigenes in the U. wallichiana transcriptome, which exhibited more or less contrasting patterns between summer and winter. These DREB unigenes may play an important role in regulating the plant�s tolerance to cold and/or drought stress. Our findings shed light on the complex and dynamic process of transcriptomic reprogramming that enables U. wallichiana to cope with seasonal changes. Furthermore, this study highlights the urgent need for further research on U. wallichiana, as this endangered plant species remains largely unexplored at the genomic level. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Transcriptome Analysis Revealed Behavior Complexity of Senescence Responses in Himalayan Tree Species Ulmus wallichiana
    (Springer, 2023-05-17T00:00:00) Singh, Amandeep; Majeed, Aasim; Sharma, Vikas; Gadri, Hari Shankar; Chowdhary, Md. Asif; Bhardwaj, Pankaj
    The Himalayas present a highly contrasting environment for the organisms that inhabit it, with summer and winter being the most disparate seasons. As winter approaches, the temperature drops, and deciduous plants, such as Ulmus wallichiana Planch., undergo senescence. In this study, we used the RNA-seq approach to generate a de novo transcriptome assembly of U. wallichiana, consisting of 300,067 unigenes. We investigated the differential expression pattern of these unigenes under changing climatic conditions, with a focus on the contrast between winter and summer. We observed that 2746 unigenes were differentially expressed, with a fold change of ? 2 and an FDR-adjusted p-value of ? 0.001. Among these unigenes, 37 were found to be related to senescence. We also identified nine DREB unigenes in the U. wallichiana transcriptome, which exhibited more or less contrasting patterns between summer and winter. These DREB unigenes may play an important role in regulating the plant�s tolerance to cold and/or drought stress. Our findings shed light on the complex and dynamic process of transcriptomic reprogramming that enables U. wallichiana to cope with seasonal changes. Furthermore, this study highlights the urgent need for further research on U. wallichiana, as this endangered plant species remains largely unexplored at the genomic level. � 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
  • Item
    Gene and metabolite profiling reveals flowering and survival strategies in Himalayan Rhododendron arboreum
    (Elsevier, 2019) Choudhary, Shurti; Thakur, Sapna; Jaitak, Vikas; Bhardwaj, Pankaj
    Rhododendron arboreum inhabits the Himalayan climate otherwise detrimental to many species, though the underlying survival mechanism remains unclear. Such temperate species have an inherent endurance towards freezing temperature which is prerequisite for an initiation and transition to flowering phase. Orchestrating the molecular architecture is vital towards managing distinct abiotic signals. To determine the molecular factors directing growth, development, and tolerance under environmental extremes in the species, the high-throughput transcriptome and metabolome data from vegetative as well as cold-acclimatized flowering season tissues were generated. Firstly, the de novo assembly pertaining to the foliar and floral tissues comprising of 157,427 unigenes was examined for a comparative analysis. 4149 of 12,577 transcripts observed with a significant fluctuating expression corresponded to seasonal retorts. Following the interactive network, 525 genes were distinguished as the epicenters of sense, response, and tolerance. Secondly, liquid chromatography coupled to mass spectrometry was adopted to profile the extent of metabolite richness across the tissues of two seasons. Taking into account the formula-based mappings offered by MetaboSearch tool, 421 unique ions obtained were annotated to 173 KEGG compounds, especially secondary metabolites. Moreover, by integrating the transcript and metabolite annotations, it was found that right from active metabolism, signaling, development, and their regulations, supplementary response to abiotic/biotic stimuli was induced. A multifaceted response displayed during flowering not only sponsored the climatic encounters but brought the shift from vegetative to reproductive growth. Overall, this comprehensive approach following transcriptome and non-targeted metabolome elucidated the contribution of genetic and metabolic factors in environmental responses