Botany - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/32
Browse
4 results
Search Results
Item Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress(Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, SanjeevIn wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SASItem Drought priming evokes essential regulation of Hsp gene families, Hsfs and their related miRNAs and induces heat stress tolerance in chickpea(Elsevier B.V., 2023-07-26T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Adhikary, Arindam; Yadav, Renu; Khan, Shahied Ahmed; Nayyar, Harsh; Kumar, SanjeevOptimum temperature is crucial for plant's survival. During high temperature stress, heat shock proteins (Hsps) are expressed many folds essentially controlled by explicit heat shock factors (Hsfs).We have narrowed key HSPs, related HSFs and miRNAs regulated after priming with drought stress and consequent heat stress in chickpea. Firstly, we identified Hsf and Hsp gene families in desi and kabuli chickpea using Genome-wide analysis. Thereafter, selected Hsfs, Hsps and related miRNAs were analyzed using qRT-PCR in contrasting chickpea varieties (PBG1 and PBG5) after drought priming and exposing at 32 �C 24 hrs, 35 �C 12 hrs, and 38 �C 6 hrs. An interaction network between Hsfs and Hsps was generated. 18 & 17 Hsfs and 42 & 34 Hsps were identified in the desi and kabuli, respectively. The gene structure and motif composition of the genes were found to be conserved in all subfamilies. A total of 32 heat shock genes were found to have undergone duplication. Most of the CaHsf and CaHsp genes were differentially expressed on exposure to a combination of drought priming and heat stress in both in-silico and qPCR analysis. Targeted miRNAs expression was coordinated with the respective genes. miR156, miR166, miR319, miR171, and miR5213 were identified to be targets of sHsps, Hsfs, and Hsps. The protein-protein interaction revealed that CaHsp18.2 and CaHsp70 might be controlled by CaHsfsA1. Drought priming strongly correlated with less membrane damage and better leaf water content. Higher harvest index and root shoot ratio significantly indicated effectiveness of priming and essential role of Hsf and Hsp and related miRNAs in heat stress tolerance. � 2023Item Drought priming evokes essential regulation of Hsp gene families, Hsfs and their related miRNAs and induces heat stress tolerance in chickpea(Elsevier B.V., 2023-07-26T00:00:00) Juneja, Sumandeep; Saini, Rashmi; Adhikary, Arindam; Yadav, Renu; Khan, Shahied Ahmed; Nayyar, Harsh; Kumar, SanjeevOptimum temperature is crucial for plant's survival. During high temperature stress, heat shock proteins (Hsps) are expressed many folds essentially controlled by explicit heat shock factors (Hsfs).We have narrowed key HSPs, related HSFs and miRNAs regulated after priming with drought stress and consequent heat stress in chickpea. Firstly, we identified Hsf and Hsp gene families in desi and kabuli chickpea using Genome-wide analysis. Thereafter, selected Hsfs, Hsps and related miRNAs were analyzed using qRT-PCR in contrasting chickpea varieties (PBG1 and PBG5) after drought priming and exposing at 32 �C 24 hrs, 35 �C 12 hrs, and 38 �C 6 hrs. An interaction network between Hsfs and Hsps was generated. 18 & 17 Hsfs and 42 & 34 Hsps were identified in the desi and kabuli, respectively. The gene structure and motif composition of the genes were found to be conserved in all subfamilies. A total of 32 heat shock genes were found to have undergone duplication. Most of the CaHsf and CaHsp genes were differentially expressed on exposure to a combination of drought priming and heat stress in both in-silico and qPCR analysis. Targeted miRNAs expression was coordinated with the respective genes. miR156, miR166, miR319, miR171, and miR5213 were identified to be targets of sHsps, Hsfs, and Hsps. The protein-protein interaction revealed that CaHsp18.2 and CaHsp70 might be controlled by CaHsfsA1. Drought priming strongly correlated with less membrane damage and better leaf water content. Higher harvest index and root shoot ratio significantly indicated effectiveness of priming and essential role of Hsf and Hsp and related miRNAs in heat stress tolerance. � 2023Item Drought priming induced thermotolerance in wheat (Triticum aestivum L.) during reproductive stage; a multifaceted tolerance approach against terminal heat stress(Elsevier Masson s.r.l., 2023-06-23T00:00:00) Kumar, Rashpal; Adhikary, Arindam; Saini, Rashmi; Khan, Shahied Ahmed; Yadav, Manisha; Kumar, SanjeevIn wheat (Triticum aestivum L.), terminal heat stress obstructs reproductive functioning eventually leading to yield loss. Drought priming during the vegetative stage can trigger a quicker and effective defense response against impending high temperature stress and improve crop production. In the present study, two contrasting wheat cultivars (PBW670 and C306) were subjected to moderate drought stress of 50�55% ?eld capacity for eight days during the jointing stage to generate drought priming (DP) response. Fifteen days after anthesis heat stress (36 �C) was imposed for three days and physiological response of primed, and non-primed plants was assessed by analyzing membrane damage, water status and antioxidative enzymes. Heat shock transcription factors (14 TaHSFs), calmodulin (TaCaM5), antioxidative genes (TaSOD, TaPOX), polyamine biosynthesis genes and glutathione biosynthesis genes were analyzed. GC-MS based untargeted metabolite profiling was carried out to underpin the associated metabolic changes. Yield related parameters were recorded at maturity to finally assess the priming response. Heat stress response was visible from day one of exposure in terms of membrane damage and elevated antioxidative enzymes activity. DP reduced the impact of heat stress by lowering the membrane damage (ELI, MDA & LOX) and enhancing antioxidative enzyme activity except APX in both the cultivars. Drought priming upregulated the expression of HSFs, calmodulin, antioxidative genes, polyamines, and the glutathione biosynthesis genes. Drought priming altered key amino acids, carbohydrate, and fatty acid metabolism in PBW670 but also promoted thermotolerance in C306. Overall, DP provided a multifaceted approach against heat stress and positive association with yield. � 2023 Elsevier Masson SAS