Botany - Research Publications

Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/32

Browse

Search Results

Now showing 1 - 3 of 3
  • Item
    Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating its Photocatalytic and In Vitro Antimicrobial Activity
    (MDPI, 2022-01-31T00:00:00) Ansari, Afzal; Siddiqui, Vasi Uddin; Rehman, Wahid Ul; Akram, Md. Khursheed; Siddiqi, Weqar Ahmad; Alosaimi, Abeer M.; Hussein, Mahmoud A.; Rafatullah, Mohd
    Here, we present an innovative and creative sustainable technique for the fabrication of titania (TiO2) using Acorus calamus (A. calamus) leaf extract as a new biogenic source, as well as a capping and reducing agent. The optical, structural, morphological, surface, and thermal character-istics of biosynthesized nanoparticles were investigated using UV, FTIR, SEM, DLS, BET, and TGA-DSC analysis. The phase formation and presence of nanocrystalline TiO2 were revealed by the XRD pattern. FTIR analysis revealed conjugation, as well as the presence of Ti�O and O�H vibrational bands. The nanoparticles were noticed to be globular, with an average size of 15�40 nm, according to the morphological analysis, and the impact of size quantification was also investigated using DLS. The photocatalytic activity of bare, commercial P-25 and biosynthesized TiO2 (G-TiO2) nano-particles in aqueous solution of rhodamine B (RhB) dye was investigated under visible light irradiation at different time intervals. The biosynthesized TiO2 nanoparticles exhibited strong photocata-lytic activity, degrading 96.59% of the RhB dye. Different kinetic representations were utilized to analyze equilibrium details. The pseudo-first-order reaction was best suited with equilibrium rate constant (K1) and regression coefficients (R2) values 3.72 � 10?4 and 0.99, respectively. The antimi-crobial efficacy of the prepared nanoparticles was investigated using the disc diffusion technique. Further, biosynthesized TiO2 showed excellent antimicrobial activity against the selected gram-pos-itive staining (B. subtilis, S. aureus) over gram-negative (P. aeruginosa, E. coli) pathogenic bacteria in comparison to bare TiO2. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Green Synthesis of TiO2 Nanoparticles Using Acorus calamus Leaf Extract and Evaluating its Photocatalytic and In Vitro Antimicrobial Activity
    (MDPI, 2022-01-31T00:00:00) Ansari, Afzal; Siddiqui, Vasi Uddin; Rehman, Wahid Ul; Akram, Md. Khursheed; Siddiqi, Weqar Ahmad; Alosaimi, Abeer M.; Hussein, Mahmoud A.; Rafatullah, Mohd
    Here, we present an innovative and creative sustainable technique for the fabrication of titania (TiO2) using Acorus calamus (A. calamus) leaf extract as a new biogenic source, as well as a capping and reducing agent. The optical, structural, morphological, surface, and thermal character-istics of biosynthesized nanoparticles were investigated using UV, FTIR, SEM, DLS, BET, and TGA-DSC analysis. The phase formation and presence of nanocrystalline TiO2 were revealed by the XRD pattern. FTIR analysis revealed conjugation, as well as the presence of Ti�O and O�H vibrational bands. The nanoparticles were noticed to be globular, with an average size of 15�40 nm, according to the morphological analysis, and the impact of size quantification was also investigated using DLS. The photocatalytic activity of bare, commercial P-25 and biosynthesized TiO2 (G-TiO2) nano-particles in aqueous solution of rhodamine B (RhB) dye was investigated under visible light irradiation at different time intervals. The biosynthesized TiO2 nanoparticles exhibited strong photocata-lytic activity, degrading 96.59% of the RhB dye. Different kinetic representations were utilized to analyze equilibrium details. The pseudo-first-order reaction was best suited with equilibrium rate constant (K1) and regression coefficients (R2) values 3.72 � 10?4 and 0.99, respectively. The antimi-crobial efficacy of the prepared nanoparticles was investigated using the disc diffusion technique. Further, biosynthesized TiO2 showed excellent antimicrobial activity against the selected gram-pos-itive staining (B. subtilis, S. aureus) over gram-negative (P. aeruginosa, E. coli) pathogenic bacteria in comparison to bare TiO2. � 2022 by the authors. Licensee MDPI, Basel, Switzerland.
  • Item
    Cellulose: A multifaceted biopolymer
    (Nova Science Publishers, Inc., 2016) Majeed, A.; Najar, R.A.; Ul Rehman, W.; Choudhary, S.; Thakur, S.; Singh, A.; Sharma, G.; Bhardwaj, P.
    Cellulose is a common natural polymer with a wide range of industrial, medical, bio fuel, agricultural, textile and paper applications. It exhibits various levels of structural organizations, from individual glucose chains through microfibrils, macrofibrils to cellulose fibers. The synthesizing machinery of cellulose consists of a six subunit plasmamembrane protein complex, cellulose synthase, organized into a rosette structure. Plant cellulose synthases possess additional plant specific motifs that are absent in bacteria. Among the different solvent systems developed for cellulose dissolution, ionic liquids stand at the forefront. Microorganism mediated energy release from cellulose facilitates its use in fuel cells as a source of energy. The nanocomposites of cellulose have revolutionized the medical field and are being chiefly used in tissue engineering, ligament engineering and wound healing. The chemical structure of cellulose make it suitable to form hydrogels which are used in tissue engineering, cartilage modelling, bone implantation, cell culture scaffolds, enhanced drug delivery, heavy metal absorbance, and in retaining soil water and efficient fertilizer release for agricultural efficiency. Besides, cellulose based ethanol production help to reduce the pressure on conventional sources of energy. This chapter focuses on cellulose structure, its synthesizing machinery, trafficking, genes and proteins involved, solubility and solvent systems, its derivatives, composites, hydrogels, fuel cells, ethanol production and degradation. ? 2016 Nova Science Publishers, Inc.