Pharmacology - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/111
Browse
2 results
Search Results
Item Antifungal synergistic effects and anti-biofilm formation activities of some bioactive 2,3-dihydro-1,5-benzoxazepine derivatives(Springer Science and Business Media Deutschland GmbH, 2022-12-26T00:00:00) Odame, Felix; Neglo, David; Sedohia, Daniel; Arthur, RichmondBenzoxazepines constitute a significant class of organic compounds extensively described in the literature. Several derivatives with pharmacological properties have been produced due to the semi-rigid azepine scaffold, which allows for the addition of other heteroatoms. This study investigated the possible antifungal effect and antioxidant activity of 2,3-dihydro-1,5-benzoxazepines. The antifungal effect was investigated using the broth dilution assay, while the antioxidant property was determined using the ABTS and DPPH scavenging tests. The results indicated that the 2,3-dihydro-1,5-benzoxazepine derivatives had antifungal properties and could be working via its fungicidal and biofilm inhibitory properties. It was also realized that it had synergistic effects when administered concomitantly with standard antifungal drugs. The antioxidant effects were high with 2,2-dimethyl-4-[(E)-2-(4-methylphenyl)ethenyl]-2,3-dihydro-1,5-benzoxazepine (1) compared to the other derivatives. It could be concluded that 2,3-dihydro-1,5-benzoxazepines could possess fungicidal and possible antioxidant properties. And hence could serve as new drug leads in discovering novel drugs that could help manage fluconazole-resistant vulvovaginal candidiasis. � 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Item Ferulic acid ameliorates neurodegeneration via the Nrf2/ARE signalling pathway: A Review(Elsevier B.V., 2022-10-30T00:00:00) Singh, Surbhi; Arthur, Richmond; Upadhayay, Shubham; Kumar, PuneetBackground: Ferulic acid is a polyphenolic phytoconstituent synthesized from the metabolism of amino acids phenylalanine and tyrosine found in fruits and vegetables. Neurodegenerative disorders have been a thorn in the flesh of neuroscientists owing in part to the increase in the aged population. Several drugs used in the management of these disorders are either ineffective or come with unbearable side effects. We present a review of ferulic acid focusing on leveraging its antioxidant property in an attempt to explain its role in neurodegenerative disorders. Basic procedure: data were obtained by perusing scientific databases including Web of Science and PubMed. It was realised that 18,000 articles were associated with ferulic acid from 1960-to 2022. We narrowed it down using the keywords neuroprotection, and antioxidant of which we had 239 articles. Main findings: results indicated that ferulic acid has wide neuropharmacological applications due to its antioxidant, anti-inflammatory, neuroprotective and antiapoptotic effects among others. The neuroprotective effect of ferulic acid has been studied in many diseases like Alzheimer's, Epilepsy, and Parkinson's disease. Principal conclusion: the neuroprotective potential of FA may be due to its ability to absorb active forms of oxygen and nitrogen and use redox-bearing compounds to regulate genetic expression including, encoding for antioxidant enzymes, the anti-apoptotic protein family Bcl-2, and pro-survival neurotrophic factors like BDNF. Its higher bioavailability and lipophilic nature make it a better drug candidate than other polyphenols for neurological disorders. � 2022 The Author(s)