Pharmacology - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/111
Browse
8 results
Search Results
Item Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond(Editions de Sante, 2023-06-08T00:00:00) Khurana, Amit; Allawadhi, Prince; Singh, Vishakha; Khurana, Isha; Yadav, Poonam; Sathua, Kshirod Bihari; Allwadhi, Sachin; Banothu, Anil Kumar; Navik, Umashanker; Bharani, Kala KumarDeficiency of selenium (Se) has been described in a significant number of COVID-19 patients having a higher incidence of mortality, which makes it a pertinent issue to be addressed clinically for effective management of the COVID-19 pandemic. Se nanoparticles (SeNPs) provide a unique option for managing the havoc caused by the COVID-19 pandemic. SeNPs possess promising anti-inflammatory and anti-fibrotic effects by virtue of their nuclear factor kappa-light-chain-stimulator of activated B cells (NF?B), mitogen-activated protein kinase (MAPKs), and transforming growth factor-beta (TGF-?) modulatory activity. In addition, SeNPs possess remarkable immunomodulatory effects, making them a suitable option for supplementation with a much lower risk of toxicity compared to their elemental counterpart. Further, SeNPs have been shown to curtail viral and microbial infections, thus, making it a novel means to halt viral growth. In addition, it can be administered in the form of aerosol spray, direct injection, or infused thin-film transdermal patches to reduce the spread of this highly contagious viral infection. Moreover, a considerable decrease in the expression of selenoprotein along with enhanced expression of IL-6 in COVID-19 suggests a potential association among selenoprotein expression and COVID-19. In this review, we highlight the unique antimicrobial and antiviral properties of SeNPs and the immunomodulatory potential of selenoproteins. We provide the rationale behind their potentially interesting properties and further exploration in the context of microbial and viral infections. Further, the importance of selenoproteins and their role in maintaining a successful immune response along with their association to Se status is summarized. � 2023 Elsevier B.V.Item Advances in therapeutic applications of silver nanoparticles(Elsevier Ireland Ltd, 2023-06-01T00:00:00) Kaushal, Ashutosh; Khurana, Isha; Yadav, Poonam; Allawadhi, Prince; Banothu, Anil Kumar; Neeradi, Dinesh; Thalugula, Sunitha; Barani, Percy Jasmine; Naik, Ramavath Redya; Navik, Umashanker; Bharani, Kala Kumar; Khurana, AmitNanotechnology is one of the most appealing area for developing new applications in biotechnology and medicine. For decades, nanoparticles have been extensively studied for a variety of biomedical applications. Silver has evolved into a potent antibacterial agent that can be used in a variety of nanostructured materials of various shapes and sizes. Silver nanoparticles (AgNP) based antimicrobial compounds are employed in a wide range of applications, including medicinal uses, surface treatment and coatings, the chemical and food industries, and agricultural productivity. When designing formulations for specific applications, the size, shape, and surface area of AgNPs are all crucial structural aspects to consider. Different methods for producing AgNPs with varying sizes and forms that are less harmful have been devised. The anticancer, anti-inflammatory, antibacterial, antiviral, and anti-angiogenic properties of AgNPs have been addressed in this review, as well as their generation and processes. Herein, we have reviewed the advances in therapeutic applications of AgNPs, as well as their limitations and barriers for future applications. � 2023 Elsevier B.V.Item ?-sitosterol Protects against Aluminium Chloride-mediated Neurotoxicity(Bentham Science Publishers, 2023-03-09T00:00:00) Yadav, Sanjay; Aggarwal, Punita; Khan, Faiz; Khodve, Gopal; Padhy, Dibya Sundar; Yadav, Poonam; Banerjee, SugatoObjective: The objective of this study is to investigate the neuroprotective effects of ?-sitosterol using the AlCl3 model of Alzheimer's Disease. Methods: AlCl3 model was used to study cognition decline and behavioral impairments in C57BL/6 mice. Animals were randomly assigned into 4 groups with the following treatments: Group 1 received normal saline for 21 days, Group 2 received AlCl3 (10 mg/kg) for 14 days; Group 3 received AlCl3(10 mg/kg) for 14 days + ?-sitosterol (25mg/kg) for 21 days; while Group 4 was administered ?-sitosterol (25mg/kg) for 21 days. On day 22, we performed the behavioral studies using a Y maze, passive avoidance test, and novel object recognition test for all groups. Then the mice were sacrificed. The corticohippocampal region of the brain was isolated for acetylcholinesterase (AChE), acetylcholine (ACh), and GSH estimation. We conducted histopathological studies using Congo red staining to measure ?-amyloid deposition in the cortex and hippocampal region for all animal groups. Results: AlCl3 successfully induced cognitive decline in mice following a 14-day induction period, as shown by significantly decreased (p < 0.001) in step-through latency, % alterations, and preference index values. These animals also exhibited a substantial decrease in ACh (p <0.001) and GSH (p < 0.001) and a rise in AChE (p < 0.001) compared to the control group. Mice administered with AlCl3 and ?-sitosterol showed significantly higher step-through latency time, % alteration time, and % preference index (p < 0.001) and higher levels of ACh, GSH, and lower levels of AChE in comparison to the AlCl3 model. AlCl3-administered animals also showed higher ?-amyloid deposition, which got significantly reduced in the ?-sitosterol treated group. Conclusion: AlCl3 was effectively employed to induce a cognitive deficit in mice, resulting in neurochemical changes and cognitive decline. ?-sitosterol treatment mitigated AlCl3-mediated cognitive impairment. � 2023 Bentham Science Publishers.Item Monkeypox infection: The past, present, and future(Elsevier B.V., 2022-10-29T00:00:00) Upadhayay, Shubham; Arthur, Richmond; Soni, Divya; Yadav, Poonam; Navik, UmaShanker; Singh, Randhir; Gurjeet Singh, Thakur; Kumar, PuneetMonkeypox is a zoonotic illness caused by the monkeypox virus (MPXV) that has a similar etiology to smallpox. The first case of monkeypox was reported in Western and Central Africa in 1971, and in 2003, there was an outbreak of monkeypox viruses outside Africa. According to the World Health Organization (WHO) and Center for Disease Control and Prevention (CDC), monkeypox is transmitted through direct contact with infected animals or persons exposed to infectious sores, scabs, or body fluids. Also, intimate contact between people during sex, kissing, cuddling, or touching parts of the body can result in the spreading of this disease. The use of the smallpox vaccine against monkeypox has several challenges and hence anti-virals such as cidofovir, brincidofovir, and tecovirimat have been used for the symptomatic relief of patients and reversing the lesion formation on the skin. Despite the recent outbreak of monkeypox most especially in hitherto non-endemic countries, there is still a lack of definitive treatment for monkeypox. In the present review, emphasis was focused on etiopathology, transmission, currently available therapeutic agents, and future targets that could be explored to halt the progression of monkeypox. From our review we can postulate that owing to the lack of a definitive cure to this reemerging disorder, there is a need for general awareness about the transmission as well as to develop appropriate diagnostic procedures, immunizations, and antiviral medication. � 2022 Elsevier B.V.Item Spotlight on liver macrophages for halting liver disease progression and injury(Taylor and Francis Ltd., 2022-10-07T00:00:00) Khurana, Amit; Navik, Umashanker; Allawadhi, Prince; Yadav, Poonam; Weiskirchen, RalfIntroduction: Over the past two decades, understanding of hepatic macrophage biology has provided astounding details of their role in the progression and regression of liver diseases. The hepatic macrophages constitute resident macrophages, Kupffer cells, and circulating bone marrow monocyte-derived macrophages, which play a diverse role in liver injury and repair. Imbalance in the macrophage population leads to pathological consequences and is responsible for the initiation and progression of acute and chronic liver injuries. Further, distinct populations of hepatic macrophages and their high heterogeneity make their complex role enigmatic. The unique features of distinct phenotypes of macrophages have provided novel biomarkers for defining the stages of liver diseases. The distinct mechanisms of hepatic macrophages polarization and recruitment have been at the fore front of research. In addition, the secretome of hepatic macrophages and their immune regulation has provided clinically relevant therapeutic targets. Areas covered: Herein, we have highlighted the current understanding in the area of hepatic macrophages, and their role in the progression of liver injury. Expert opinion: It is essential to ascertain the physiological and pathological role of evolutionarily conserved distinct macrophage phenotypes in different liver diseases before viable approaches may see a clinical translation. � 2022 Informa UK Limited, trading as Taylor & Francis Group.Item Chemical composition, in�vitro and in silico evaluation of essential oil from Eucalyptus tereticornis leaves for lung cancer(Taylor and Francis Ltd., 2022-08-08T00:00:00) Anju; Kumar, Amit; Yadav, Poonam; Navik, Umashanker; Jaitak, VikasChemical composition of the essential oil (EO) of Eucalyptus tereticornis leaves was studied by gas chromatography�mass spectrometry. Forty-five constituents were identified in the oil hydrodistilled from the sample collected from Ghudda Village, Bathinda (Pb), India of which eucalyptol (34.39%) and ledol (9.92%) were the major constituents. In vitro antioxidant and anticancer potential of EO was analysed by DPPH 2,2-diphenylpicrylhydrazyl (DPPH) and MTT assay. The percentage free radical scavenging activity was found to be 63.77%. The antiproliferative activity was analysed using MTT assay in adenocarcinomic human alveolar basal epithelial A549 cancer cell line and showed IC50 value of 47.14 �g/ml. In silico study of EO, constituents were performed using Maestro 12.9 against EGFR (PDB ID-2RGP). Five constituents from EO showed high dockscore as compared to standard Mobicertinib which indicated the effectiveness of oil constituents against lung cancer. � 2022 Informa UK Limited, trading as Taylor & Francis Group.Item Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking(MDPI, 2022-08-18T00:00:00) Gundu, Chayanika; Arruri, Vijay Kumar; Yadav, Poonam; Navik, Umashanker; Kumar, Ashutosh; Amalkar, Veda Sudhir; Vikram, Ajit; Gaddam, Ravinder ReddyEndocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a �molecular scissor� to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis. � 2022 by the authors.Item Zebrafish as an emerging tool for drug discovery and development for thyroid diseases(Academic Press, 2022-09-06T00:00:00) Yadav, Poonam; Sarode, Lopmudra P.; Gaddam, Ravinder Reddy; Kumar, Puneet; Bhatti, Jasvinder Singh; Khurana, Amit; Navik, UmashankerZebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis. � 2022 Elsevier Ltd