Geography - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/93
Browse
2 results
Search Results
Item Simulating Groundwater Potential Zones in Mountainous Indian Himalayas�A Case Study of Himachal Pradesh(MDPI, 2023-03-13T00:00:00) Sud, Anshul; Kanga, Rahul; Singh, Suraj Kumar; Meraj, Gowhar; Kanga, Shruti; Kumar, Pankaj; Ramanathan, A.L.; Sudhanshu; Bhardwaj, VinayGroundwater resources are increasingly important as the main supply of fresh water for household, industrial, and agricultural activities. However, overuse and depletion of these resources can lead to water scarcity and resource deterioration. Therefore, assessing groundwater availability is essential for sustainable water management. This study aims to identify potential groundwater zones in the Bilaspur district of Himachal Pradesh using the Multi Influencing Factor (MIF) technique, a modern decision-making method widely used in various sectors. Geospatial models were integrated with the MIF technique to evaluate prospective groundwater areas. Grid layouts of all underground water influencing variables were given a predetermined score and weight in this decision-making strategy. The potential groundwater areas were then statistically assessed using graded data maps of slope, lithology, land-use, lineament, aspect, elevation, soil, drainage, geomorphology, and rainfall. These maps were converted into raster data using the raster converter tool in ArcGIS software, utilizing Survey of India toposheets, SRTM DEM data, and Resourcesat-2A satellite imageries. The prospective groundwater zones obtained were classified into five categories: nil�very low, covering 0.34% of the total area; very low�low (51.64%); low�moderate (4.92%); moderate�high (18%) and high�very high (25%). Scholars and policymakers can collaborate to develop systematic exploration plans for future developments and implement preservative and protective strategies by identifying groundwater recharge zones to reduce groundwater levels. This study provides valuable insights for long-term planning and management of water resources in the region. � 2023 by the authors.Item Groundwater Potential Zone Mapping in the Ghaggar River Basin, North-West India, Using Integrated Remote Sensing and GIS Techniques(MDPI, 2023-03-02T00:00:00) Upadhyay, Ritambhara K.; Tripathi, Gaurav; ?urin, Bojan; �amanovi?, Sanja; Cetl, Vlado; Kishore, Naval; Sharma, Mukta; Singh, Suraj Kumar; Kanga, Shruti; Wasim, Md; Rai, Praveen Kumar; Bhardwaj, VinayThe immense dependence of the growing population on groundwater has resulted in depletion at a fast pace can be seen nowadays. Identifying a groundwater potential zone can be proved as an aid to provide insight to the decision-makers and local authorities for planning purposes. This study evaluated the delineation of groundwater potential zones using integrated remote sensing and GIS approach. Various thematic layers such as geology, geomorphology, lineament, slope, drainage, soil, land use/land cover, and rainfall were considered in this study as these have influence on the occurrence of groundwater and its cycle, and maps have been prepared in GIS domain. Afterward, appropriate weights were assigned to these layers based on multi-criteria decision analysis, i.e., Analytical Hierarchy Process (AHP). Groundwater potentiality has been delineated in different zones (low, moderate, high, and very high) in the study region based on weighted overlay analysis. The study reveals zones with different groundwater prospects viz. low (1.27%), moderate (15.65%), high (75.54%), and very high (7.29%). The ground survey data provided by CGWB (Central Ground Water Board) of nearly 100 wells/dug wells/borewells/piezometers have been used for validation purposes, showing comparable results with the groundwater prospects zones. It also confirms that the majority of these wells fall under very high or high groundwater potential zones. They were also found to be thereby indicating that there is the existence of a permeable reservoir with considerable water storage in the subsurface. One of the most important issues for users and governments is groundwater depletion. Planning for the available groundwater resource is made easier by identifying the potential for groundwater (low to high). � 2023 by the authors.