Pharmaceutical Sciences and Natural Products - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56
Browse
3 results
Search Results
Item Thiazole and Related Heterocyclic Systems as Anticancer Agents: A Review on Synthetic Strategies, Mechanisms of Action and SAR Studies(Bentham Science Publishers, 2022-03-21T00:00:00) Sahil; Kaur, Kamalpreet; Jaitak, VikasBackground: Cancer is the second leading cause of death worldwide. Many anticancer drugs are commercially available, but lack of selectivity, target specificity, cytotoxicity, and development of resistance lead to serious side effects. Several experiments have been going on to develop compounds with minor or no side effects. Objective: This review mainly emphasizes synthetic strategies, SAR studies, and mechanism of action if thiazole, benzothiazole, and imidazothiazole-containing compounds as anticancer agents. Methods: Recent literature related to thiazole and thiazole-related derivatives endowed with encouraging anticancer potential is reviewed. This review emphasizes contemporary strategies used for the synthesis of thiazole and related derivatives, mechanistic targets, and comprehensive structural activity relationship studies to provide perspective into the rational design of high-efficiency thiazole-based anticancer drug candidates. Results: Exhaustive literature survey indicated that thiazole derivatives are associated with properties of inducing apoptosis and disturbing tubulin assembly. Thiazoles are also associated with the inhibition of NFkB/mTOR/PI3K/AkT and regulation of estrogenmediated activity. Furthermore, thiazole derivatives have been found to modulate critical targets, such as topoisomerase and HDAC. Conclusion: Thiazole derivatives seem to be quite competent and act through various mechanisms. Some of the thiazole derivatives, such as compounds 29, 40, 62, and 74a with IC50 values of 0.05 ?M, 0.00042 ?M, 0.18 ?M, and 0.67 ?M, respectively, not only exhibit anticancer activity, but they also have lower toxicity and better absorption. Therefore, some other similar compounds could be investigated to aid in the development of anticancer pharmacophores. � 2022 Bentham Science Publishers.Item Synthesis, in vitro, and docking analysis of c-3 substituted coumarin analogues as anticancer agents(Bentham Science Publishers, 2020-01-28T00:00:00) Thakur, Anuradha; Kaur, Kamalpreet; Sharma, Praveen; Singla, Ramit; Singh, Sandeep; Jaitak, VikasBackground: Breast cancer (BC) is a leading cause of cancer-related deaths in women next to skin cancer. Estrogen receptors (ERs) play an important role in the progression of BC. Current anticancer agents have several drawbacks such as serious side effects and the emergence of resistance to chemotherapeutic drugs. As coumarins possess minimum side effects along with multidrug reversal activity, it has a tremendous ability to regulate a diverse range of cellular pathways that can be explored for selective anticancer activity. Objectives: Synthesis and evaluation of new coumarin analogues for anti-proliferative activity on human breast cancer cell line MCF-7 along with exploration of binding interaction of the compounds for ER-? target protein by molecular docking. Methods: In this study, the anti-proliferative activity of C-3 substituted coumarins analogues (1-17) has been evaluated against estrogen receptor-positive MCF-7 breast cancer cell lines. Molecular interactions and ADME study of the compounds were analyzed by using Schrodinger software. Results: Among the synthesized analogues, 12 and 13 show good antiproliferative activity with IC50 values 1 and 1.3 ?M, respectively. Molecular docking suggests a remarkable binding pose of all the seventeen compounds. Compounds 12 and 13 were found to exhibit a docking score of -4.10 kcal/mol and -4.38 kcal/mol, respectively. Conclusion: Compounds 12 and 13 showed the highest activity followed by 1 and 5. ADME properties of all compounds were in the acceptable range. The active compounds can be taken for lead optimization and mechanistic interventions for their in vivo study in the future. � 2021 Bentham Science Publishers.Item Synthesis and In Silico Studies of C-4 Substituted Coumarin Analogues as Anticancer Agents(Bentham Science Publishers, 2020-06-29T00:00:00) Dandriyal, Jyoti; Kaur, Kamalpreet; Jaitak, VikasBackground: Coumarin is a fused ring system and possesses the enormous capability of targeting various receptors participating in the cancer pathway. Coumarin and its derivatives were found to exhibit very rare toxicity and other side effects. It has been found its immense anticancer potential depends on the nature of the group present and its pattern of substitution on the basic nu-cleus. Objectives: Synthesis of C-4 substituted coumarin derivatives and to study their molecular interactions with ER? for the anticancer activity for Breast Cancer. Methods: C-4 substituted coumarins analogues (1-10) have been synthesized using conventional heating and microwave irradiation. Using Schrodinger software, molecular modeling studies were carried out and ADME properties of the compounds were predicted. Results: All the synthesized compounds have shown better G-Score (-6.87 to-8.43 kcal/mol) as compared to the standard drug tamoxifen (-5.28kcal/mol) and auraptene (-3.89kcal/mol). Molecular docking suggests that all compounds fit in the active site of protein as they have the same hydro-phobic pocket as standard drug tamoxifen, and have an acceptable range of ADME properties. Conclusion: Microwave-assisted synthesis showed better results as compared to conventional heat-ing. In silico studies revealed that all the compounds befit in the active site of the protein. ADME properties showed that all compounds are in allowable limits for human oral absorption. In the fu-ture, there is a possibility of in vitro and in vivo studies of the synthesized compounds. � 2021 Bentham Science Publishers.