Pharmaceutical Sciences and Natural Products - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56
Browse
4 results
Search Results
Item Exploring the COVID-19 vaccine candidates against SARS-CoV-2 and its variants: where do we stand and where do we go?(Taylor and Francis Ltd., 2021-12-03T00:00:00) Joshi, Gaurav; Borah, Pobitra; Thakur, Shweta; Sharma, Praveen; Mayank; Poduri, RamaraoAs of September 2021, 117 COVID-19 vaccines are in clinical development, and 194 are in preclinical development as per the World Health Organization (WHO) published draft landscape. Among the 117 vaccines undergoing clinical trials, the major platforms include protein subunit; RNA; inactivated virus; viral vector, among others. So far, USFDA recognized to approve the Pfizer-BioNTech (Comirnaty) COVID-19 vaccine for its full use in individuals of 16�years of age and older. Though the approved vaccines are being manufactured at a tremendous pace, the wealthiest countries have about 28% of total vaccines despite possessing only 10.8% of the total world population, suggesting an inequity of vaccine distribution. The review comprehensively summarizes the history of vaccines, mainly focusing on vaccines for SARS-CoV-2. The review also connects relevant topics, including measurement of vaccines efficacy against SARS-CoV-2 and its variants, associated challenges, and limitations, as hurdles in global vaccination are also kept forth. � 2021 Taylor & Francis Group, LLC.Item Recent efforts for drug identification from phytochemicals against SARS-CoV-2: Exploration of the chemical space to identify druggable leads(Elsevier Ltd, 2021-04-03T00:00:00) Joshi, Gaurav; Sindhu, Jayant; Thakur, Shikha; Rana, Abhilash; Sharma, Geetika; Mayank; Poduri, RamaraoNature, which remains a central drug discovery pool, is always looked upon to find a putative druggable lead. The natural products and phytochemical derived from plants are essential during a global health crisis. This class represents one of the most practical and promising approaches to decrease pandemic's intensity owing to their therapeutic potential. The present manuscript is therefore kept forth to give the researchers updated information on undergoing research in allied areas of natural product-based drug discovery, particularly for Covid-19 disease. The study briefly shreds evidence from in vitro and in silico researches done so far to find a lead molecule against Covid-19. Following this, we exhaustively explored the concept of chemical space and molecular similarity parameters for the drug discovery about the lead(s) generated from in silico-based studies. The comparison was drawn using FDA-approved anti-infective agents during 2015�2020 using key descriptors to evaluate druglike properties. The outcomes of results were further corroborated using Molecular Dynamics studies which suggested the outcomes in alignment with chemical space ranking. In a nutshell, current research work aims to provide a holistic strategic approach to drug design, keeping in view the identified phytochemicals against Covid-19. � 2021 Elsevier LtdItem Selection of active antiviral compounds against COVID-19 disease targeting coronavirus endoribonuclease nendou/NSP15 via ligand-based virtual screening and molecular docking(Bentham Science Publishers, 2020-12-15T00:00:00) Joshi, Gaurav; Poduri, RamaraoBackground: The rapid spread of SARS-CoV-2 has caused havoc and panic among individuals, which has further worsened due to the unavailability of a proven drug(s) regime. Objective: The current work involves drug repurposing from the pool of USFDA approved drugs involving in silico virtual screening technique against COVID-19. Materials and Methods: Methodology involves virtual screening of 8548 FDA approved drugs against target protein endoribonuclease NendoU (Nsp15) (PDB ID: 6VWW). Result: Virtual screening-based analysis enabled us to identify four drugs, Eprosartan, Inarigivir soproxil, Foretinib, and DB01813 that could plausibly target Nsp15 against COVID-19 disease. Conclusion: The work offers the scope to corroborate the findings via in vitro and in vivo techniques to identify the potential of selected leads against COVID-19. The outcome may also help in tracing their molecular mechanism(s) in addition to their development at the clinical level in the future. � 2021 Bentham Science Publishers.Item Exploring the magic bullets to identify Achilles� heel in SARS-CoV-2: Delving deeper into the sea of possible therapeutic options in Covid-19 disease: An update(Elsevier Ltd, 2020-11-27T00:00:00) Thakur, Shikha; Mayank; Sarkar, Bibekananda; Ansari, Arshad J.; Khandelwal, Akanksha; Arya, Anil; Poduri, Ramarao; Joshi, GauravThe symptoms associated with Covid-19 caused by SARS-CoV-2 in severe conditions can cause multiple organ failure and fatality via a plethora of mechanisms, and it is essential to discover the efficacious and safe drug. For this, a successful strategy is to inhibit in different stages of the SARS-CoV-2 life cycle and host cell reactions. The current review briefly put forth the summary of the SARS-CoV-2 pandemic and highlight the critical areas of understanding in genomics, proteomics, medicinal chemistry, and natural products derived drug discovery. The review further extends to briefly put forth the updates in the drug testing system, biologics, biophysics, and their advances concerning SARS-CoV-2. The salient features include information on SARS-CoV-2 morphology, genomic characterization, and pathophysiology along with important protein targets and how they influence the drug design and development against SARS-CoV-2 and a concerted and integrated approach to target these stages. The review also gives the status of drug design and discovery to identify the drugs acting on critical targets in SARS-CoV-2 and host reactions to treat Covid-19. � 2020 Elsevier Ltd