Pharmaceutical Sciences and Natural Products - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56
Browse
5 results
Search Results
Item Flavonoids as P-glycoprotein inhibitors for multidrug resistance in cancer: an in-silico approach(Taylor and Francis Ltd., 2022-09-19T00:00:00) Kumar, Amit; Kalra, Sourav; Jangid, Kailash; Jaitak, VikasCancer has become a leading cause of mortality due to non-communicable diseases after cardiovascular disease worldwide and is increasing day by day at a daunting pace. According to an estimate by 2040 there will be 28.4 million cancer cases. Occurrence of multidrug resistance has further worsened the scenario of available cancer treatment. Among different mechanisms of multidrug resistance efflux of xenobiotics by ABC transporter is of prime importance. P-glycoprotein (P-gp) is the major factor behind occurrence of multidrug resistance due to its wide distribution and invariably big binding cavity. Various generations of chemical inhibitors for P-gp have been designed and tested are not devoid of major side effects. Thus, in present study flavonoids a major class of natural compounds was virtually screened in order to find molecules which can be used as selective P-gp inhibitors to be used along with chemotherapeutics. After screening 4275 molecules from different classes of flavonoids i.e. flavan, flavanol, flavonone, flavone, anthocyanins, and isoflavone, through Glide docking top ten hit molecules were selected based on their binding affinity, binding energy calculation and pharmacokinetic properties. All the hit molecules were found to have docking score within the range of ?11.202 to ?9.699 kcal/mol showing very strong interaction with the amino acid residues of binding pocket. Whereas, dock score of standard P-gp inhibitor verapamil was ?4.984 kcal/mol. The ligand and protein complex were found to be quite stable while run through molecular dynamics simulations. Communicated by Ramaswamy H. Sarma. � 2022 Informa UK Limited, trading as Taylor & Francis Group.Item Molecular Docking and In Vitro Anticancer Screening of Synthesized Arylthiazole linked 2H-indol-2-one Derivatives as VEGFR-2 Kinase Inhibitors(Bentham Science Publishers, 2021-11-18T00:00:00) Shalmali, Nishtha; Bawa, Sandhya; Ali, Md Rahmat; Kalra, Sourav; Kumar, Raj; Zeya, Bushra; Rizvi, Moshahid Alam; Partap, Sangh; Husain, AsifBackground: Indoline-2,3-dione comprises a leading course group of heterocycles endowed with appealing biological actions, including anticancer activity. There are significant justifications for exploring the anticancer activity of Schiff base derivatives of isatin as a vast number of reports have documented remarkable antiproliferative action of isatin nucleus against various cancer cell lines. Aims and Objectives: A series of arylthiazole linked 2H-indol-2-one derivatives (5a-t) was designed and synthesized as potential VEGFR-2 kinase inhibitors keeping the essential pharmacophoric features of standard drugs, like sunitinib, sorafenib, nintedanib, etc. They were evaluated for their in vitro anticancer activity. The aim of this study was to investigate and assess the anticancer potential of isatin-containing compounds along with their kinase inhibition activity. Methods: The title compounds were synthesized by reacting substituted isatins with para-substituted arylthiazoles using appropriate reaction conditions. Selected synthesized derivatives went under preliminary screening against a panel of 60 cancer cell lines at NCI, the USA, for single-dose and five dose assays. Molecular docking was performed to explore the binding and interactions with the active sites of the VEGFR-2 receptor (PDB Id: 3VHE). Derivatives 5a, 5b, 5c, 5d, 5g, 5h, and 5m were assessed for in vitro inhibition potency against Human VEGFR-2 using ELISA (En-zyme-Linked Immunosorbent Assay) kit. All the target compounds were determined against human colon cancer cell line SW480 (colorectal adenocarcinoma cells). Cellular apoptosis/necrosis was determined by flow cytometry using annexin V-FITC. DNA content of the cells was analyzed by flow cytometry and the cycle distribution was quantified. Results: Compounds 5a and 5g exhibited noteworthy inhibition during a five-dose assay against a panel of 60 cell lines with MID GI50 values of 1.69 and 1.54 �M, respectively. Also, both the lead compounds 5a and 5g demonstrated promising VEGFR-2 inhibitory activity with IC50 values of 5.43�0.95 and 9.63�1.32 �M, respectively. The aforesaid potent compounds were found effective against SW480 (colorectal adenocarcinoma cells) with IC50 values of 31.44 �M and 106.91 �M, respectively. Compound 5a was found to arrest the cell cycle at the G2/M phase, increasing apoptotic cell death. The docking study also supported VEGFR-2 inhibitory activity as both compounds 5a and 5g displayed promising binding and interactions with the active sites of VEGFR-2 receptor (PDB: 3VHE) with docking scores-9.355 and-7.758, respectively. All the compounds obeyed Lipinski�s rule of five. Conclusion: Indoline-2,3-dione and thiazole have huge potential to be considered a steer combination approach for developing promising kinase inhibitors as cancer therapeutics. � 2022.Item Rationalization of the activity Profile of Pyruvate Kinase Isozyme M2 (PKM2) Inhibitors using 3D QSAR(Bentham Science Publishers, 2021-08-05T00:00:00) Kusuma, Merugumala; Arora, Sahil; Kalra, Sourav; Chaturvedi, Anuhar; Heuser, Michael; Kumar, RajIntroduction: Pyruvate kinase isozyme M2 (PKM2) was observed to be overexpressed and play a key role in cell growth and cancer cells' metabolism. During the past years, phytochemicals have been developed as new treatment options for chemoprevention and cancer therapy. Natural re-sources, like shikonin (naphthoquinone) and its derivatives, have emerged to be high potential therapeutics in cancer treatment. Methods: Our study aimed to design novel anti-tumour agents (PKM2 inhibitors) focusing on the shikonin scaffold with a better activity using computational methods. We applied a three-dimensional quantitative structure-activity relationship (3D-QSAR) approach using Field-based QSAR. Results: The Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were performed on a series of forty shikonin derivatives, including shikonin, to develop robust models and rationalize the PKM2 inhibitory activity profile by building a correlation between structural features and activity. Conclusion: These predictive computational models will further help the design and synthesis of potent PKM2 inhibitors and their fast biological assessment at a low cost. � 2021 Bentham Science Publishers.Item Design, synthesis, biological evaluation of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehydes as non-purine xanthine oxidase inhibitors: Tracing the anticancer mechanism via xanthine oxidase inhibition(Academic Press Inc., 2021-01-07T00:00:00) Joshi, Gaurav; Sharma, Manisha; Kalra, Sourav; Gavande, Navnath S.; Singh, Sandeep; Kumar, RajXanthine oxidase (XO) has been primarily targeted for the development of anti-hyperuriciemic /anti-gout agents as it catalyzes the conversion of xanthine and hypoxanthine into uric acid. XO overexpression in various cancer is very well correlated due to reactive oxygen species (ROS) production and metabolic activation of carcinogenic substances during the catalysis. Herein, we report the design and synthesis of a series of 3,5-diaryl-4,5-dihydro-1H-pyrazole carbaldehyde derivatives (2a-2x) as xanthine oxidase inhibitors (XOIs). A docking model was developed for the prediction of XO inhibitory activity of our novel compounds. Furthermore, our compounds anticancer activity results in low XO expression and XO-harboring cancer cells both in 2D and 3D-culture models are presented and discussed. Among the array of synthesized compounds, 2b and 2m emerged as potent XO inhibitors having IC50 values of 9.32 � 0.45 �M and 10.03 � 0.43 �M, respectively. Both compounds induced apoptosis, halted the cell cycle progression at the G1 phase, elevated ROS levels, altered mitochondrial membrane potential, and inhibited antioxidant enzymes. The levels of miRNA and expression of redox sensors in cells were also altered due to increase oxidative stress induced by our compounds. Compounds 2b and 2m hold a great promise for further development of XOIs for the treatment of XO-harboring tumors. � 2021 Elsevier Inc.Item Synthetic versus enzymatic pictet-spengler reaction: An overview(Bentham Science Publishers B.V., 2018) Sharma, Sachin; Joshi, Gaurav; Kalra, Sourav; Singh, Sandeep; Kumar, RajBackground: Pictet-Spengler reactions is an irreplaceable part of cyclization reaction leading to the formation of indispensable heterocyclic moieties including imidazole, benzoxazole, pyrrole, indole and others having immense biological and chemical significance. Researchers have explored this reaction using different types of catalysts and reactions conditions (including solvents, acids, etc.) to ensure the better selectivity, less reaction time and high product yields. A total of five Pictet-Spenglerases have been discovered from various sources including plants, animals, fungi, and microbes, and are responsible for the synthesis of various important alkaloids of biological medicinal importance. Objective: The present review is a strenuous effort to assemble information mainly focusing on synthetic as well as biological Pictet-Spengler reactions catalysed by enzymes called Pictet-Spenglerase. Conclusion: In the present review, the recent advances in the PS-mediated synthesis of diverse heterocycles such as tetrahydroisoquinoline, tetrahydro-?-carbolines, tetrahydroimidazopyridines and other fused heterocycles via chemical as well as enzymatic pathways have been covered. The compounds find their scope as medicinal agents for the treatment of cancer, tuberculosis, bacterial infection, leishmanial, etc. The compilation is expected to provide a mechanistic insight to chemists to enhance the reaction condition, yields and another parameter to ensure the safe and inexpensive reaction conditions considering the "Green-Concept" of chemistry.