Pharmaceutical Sciences and Natural Products - Research Publications
Permanent URI for this collectionhttps://kr.cup.edu.in/handle/32116/56
Browse
5 results
Search Results
Item PROTAC�ing oncoproteins: targeted protein degradation for cancer therapy(BioMed Central Ltd, 2023-03-30T00:00:00) Kelm, Jeremy M.; Pandey, Deepti S.; Malin, Evan; Kansou, Hussein; Arora, Sahil; Kumar, Raj; Gavande, Navnath S.Molecularly targeted cancer therapies substantially improve patient outcomes, although the durability of their effectiveness can be limited. Resistance to these therapies is often related to adaptive changes in the target oncoprotein which reduce binding affinity. The arsenal of targeted cancer therapies, moreover, lacks coverage of several notorious oncoproteins with challenging features for inhibitor development. Degraders are a relatively new therapeutic modality which deplete the target protein by hijacking the cellular protein destruction machinery. Degraders offer several advantages for cancer therapy including resiliency to acquired mutations in the target protein, enhanced selectivity, lower dosing requirements, and the potential to abrogate oncogenic transcription factors and scaffolding proteins. Herein, we review the development of proteolysis targeting chimeras (PROTACs) for selected cancer therapy targets and their reported biological activities. The medicinal chemistry of PROTAC design has been a challenging area of active research, but the recent advances in the field will usher in an era of rational degrader design. � 2023, This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.Item Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities(American Chemical Society, 2023-02-22T00:00:00) Maity, Pritam; Chatterjee, Joydeep; Patil, Kiran T.; Arora, Sahil; Katiyar, Madhurendra K.; Kumar, Manvendra; Samarbakhsh, Amirreza; Joshi, Gaurav; Bhutani, Priyadeep; Chugh, Manoj; Gavande, Navnath S.; Kumar, RajEpidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality. � 2023 American Chemical Society.Item A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2(American Chemical Society, 2021-11-02T00:00:00) Arora, Sahil; Joshi, Gaurav; Chaturvedi, Anuhar; Heuser, Michael; Patil, Santoshkumar; Kumar, RajThe allosteric regulation of pyruvate kinase M2 (PKM2) affects the switching of the PKM2 protein between the high-activity and low-activity states that allow ATP and lactate production, respectively. PKM2, in its low catalytic state (dimeric form), is chiefly active in metabolically energetic cells, including cancer cells. More recently, PKM2 has emerged as an attractive target due to its role in metabolic dysfunction and other interrelated conditions. PKM2 (dimer) activity can be inhibited by modulating PKM2 dimer�tetramer dynamics using either PKM2 inhibitors that bind at the ATP binding active site of PKM2 (dimer) or PKM2 activators that bind at the allosteric site of PKM2, thus activating PKM2 from the dimer formation to the tetrameric formation. The present perspective focuses on medicinal chemistry approaches to design and discover PKM2 inhibitors and activators and further provides a scope for the future design of compounds targeting PKM2 with better efficacy and selectivity. � 2021 American Chemical SocietyItem U.S. FDA Approved Drugs from 2015-June 2020: A Perspective(American Chemical Society, 2021-02-22T00:00:00) Bhutani, Priyadeep; Joshi, Gaurav; Raja, Nivethitha; Bachhav, Namrata; Rajanna, Prabhakar K.; Bhutani, Hemant; Paul, Atish T.; Kumar, RajIn the present work, we report compilation and analysis of 245 drugs, including small and macromolecules approved by the U.S. FDA from 2015 until June 2020. Nearly 29% of the drugs were approved for the treatment of various types of cancers. Other major therapeutic areas of focus were infectious diseases (14%); neurological conditions (12%); and genetic, metabolic, and cardiovascular disorders (7-8% each). Itemization of the approved drugs according to the year of approval, sponsor, target, chemical class, major drug-metabolizing enzyme(s), route of administration/elimination, and drug-drug interaction liability (perpetrator or/and victim) is presented and discussed. An effort has been made to analyze the pharmacophores to identify the structural (e.g., aromatic, heterocycle, and aliphatic), elemental (e.g., boron, sulfur, fluorine, phosphorus, and deuterium), and functional group (e.g., nitro drugs) diversity among the approved drugs. Further, descriptor-based chemical space analysis of FDA approved drugs and several strategies utilized for optimizing metabolism leading to their discoveries have been emphasized. Finally, an analysis of drug-likeness for the approved drugs is presented. � 2021 American Chemical Society.Item Pyrazoloquinazolines: Synthetic strategies and bioactivities(2015) Garg, Mansi; Chauhan, Monika; Singh, Pankaj Kumar; Singh, Pankaj Kumar; Alex, Jimi Marin; Kumar, RajNumerous N-heterocycles are indisputably evidenced to exhibit myriad biological activities. In the recent past, attempts made to condense the various heterocycles have resulted in derivatives possessing better bioactivities. Among many such condensed heterocycles, pyrazoloquinazolines have managed to hold the attention of many researchers, owing to the broad spectrum of activities they portray. This review is the first of its kind to congregate the various pyrazoloquinazolines reported until now and categorizes these structurally isomeric classes into eleven different groups based on the fusion pattern of the ring such as [1,5-c], [5,1-b], [4,3-h], etc. Furthermore, this review is a concerted effort to highlight design, synthetic strategies as well as biological activities of each class of this condensed heterocycle. Structure-activity relationship studies and in silico approaches wherever reported have also been discussed. In addition, manuscript also offers scope for design, synthesis and generation of libraries of unreported classes of pyrazoloquinazolines for the biological evaluation. Copyright ? 2014 Elsevier Masson SAS. All rights reserved.